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Abstract

Quantum entanglement which is at the heart of quantum information sci-

ence marked one of the most significant departures of quantum mechanics

from classical formalism. It remains a source of heated debates and posed

questions pertaining to the foundational issues of quantum mechanics. A

plethora of work followed the inception of entanglement, which addressed

fundamental aspects.

However, towards the end of the last century the focus on entanglement grad-

ually shifted from its foundational attributes to practical implementations.

This resulted in state of the art technologies unimaginable within classical

limits. Entanglement started to be counted as a major resource for quantum

information and computational tasks.

The ubiquitous role of entanglement in tasks of communication and computa-

tion and its various manifestations , make its detection and characterization

all the more important. This thesis is an attempt to encapsulate some fea-

tures and characterizations of entanglement.

Here we have laid down prescriptions to construct hermitian operators ,

namely entanglement witnesses which can detect states admitting a posi-

tive partial transpose. We have discussed the experimental implementation

of such witnesses. This is followed up by a study on the methods of construc-

tion of common witnesses which can detect a large set of entangled states.

This is extended to the case of common Schmidt witnesses. A comparative

study is made between decomposable and non-decomposable witnesses.

Teleportation, an archetypal quantum information processing task is made

vii
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possible through the use of entangled states as quantum channels. How-

ever,not all entangled states are suitable for the purpose . We have intro-

duced the notion of teleportation witnesses which detect those entangled

states which can be utilized as teleportation channels. The question of opti-

mality of such witnesses is addressed next, where we have constructed some

optimal teleportation witnesses in d⊗ d dimensions.

We have introduced the notion of hermitian operators that can detect states

which are not separable from spectrum and also discussed their relevance in

entanglement creation through quantum gates and non-local unitary opera-

tions.

The thesis concludes with a summary and discussion on possible courses of

future work.



Chapter 1

Introduction and Outline

”There are two ways of doing calculations in theoretical physics. One way

and this is the way I prefer is to have a clear physical picture of the process

that you are calculating. The other way is to have a precise and self consistent

mathematical formalism.”

Enrico Fermi

Quantum entanglement [EPR35, Sch35] brought a significant distinction

to quantum mechanics. It signalled one of the foremost departures of quan-

tum mechanics from classical mechanics.Entanglement refers to quantum cor-

relations between separated physical systems much stronger than correlations

allowed in classical mechanics. The notion of entanglement was envisaged

by Einstein , Podolsky and Rosen (EPR) in their seminal paper [EPR35]

to demonstrate the incompleteness of quantum theory. The nomenclature

”Entanglement” was however coined by Schrodinger [Sch35] in a follow-up

to the EPR contribution. Three decades later Bell formulated inequalities

that any theory fulfilling the fundamental assumptions of the EPR , has to

obey[Bel64]. He even showed that some entangled states violate these in-

equalities.

1



Chapter 1. Introduction and Outline 2

Gradually, the attitude towards entanglement changed from the exploita-

tion of its foundational principles to its practical implementations. Feynman

[Fey82] motivated the quest to use quantum mechanics to simulate computa-

tions unimaginable classically. Subsequently, Deutsch [Deu85] laid down the

quantum counterpart to the Church-Turing thesis [Chu36, Tur36] to pioneer

quantum computation , later built upon by Barenco et. al.[BDEJ95]. Quan-

tum algorithms [Sho94, Gro97] followed ,demonstrating exponential speed

up over classical computations once again buttressing the significance of en-

tanglement.

In parallel , the information theoretical aspects of entanglement[NC10] were

also being exploited upon leading to milestone applications like teleportation

[BBC+93], superdense coding[BW92]. The study of secured messages shifted

paradigms with the advent of quantum cryptography [BB84, Eke91]. These

state of the art technologies , gradually established the notion of entangle-

ment as a physical resource much like energy.

Although entanglement is a vital resource its detection is a hard task. For low

dimensional (2⊗2 and 2⊗3) states there exist simple necessary and sufficient

conditions for separability [Per96, HHH96], which is based on the fact that

separable states have a positive-partial transpose(PPT). For higher dimen-

sional systems all states with negative partial transpose(NPT) are entangled

but there are entangled states which have a positive-partial transpose. This

paradoxical behaviour of quantum entanglement in higher dimensions makes

it difficult to lay down a single necessary and sufficient condition for its de-

tection.

A silver lining though came in the form of entanglement witnesses(EW)

[HHH96, Ter00, GT09]. An outcome of the celebrated Hahn-Banach the-

orem in functional analysis[Hol75], entanglement witnesses are hermitian op-

erators with at least one negative eigenvalue. Entanglement witness provides

a necessary and sufficient condition to detect entanglement . More specif-

ically a given state is entangled if and only if there is an EW that detects

it[HHH96]. Entanglement witnesses can also be realized in an experimental

setup thus making it a potent tool in the detection of entanglement. Tele-

portation [BBC+93], a quintessential quantum information processing task,
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in its standard protocol, requires entangled states which can give a fidelity

higher than the classical optimum. It is an intriguing fact that not all en-

tangled states suit the purpose. In fact literature has instances where even

though a state is entangled, it cannot provide for a fidelity higher than the

classical limit. This necessitates a criterion to check whether an entangled

state is eligible to be used as a quantum teleportation channel. On the other

side, the set of separable states contains a special class of states termed as

absolutely separable which remain separable under any factorization. The

complementary class containing non-absolutely separable states can be used

successfully for entanglement creation, which has been a scope of major re-

search [SKK+00, RNO+00].

1.1 Plan of the thesis

The thesis follows the scheme given below :

• Chapter 2 revisits some mathematical and physical requisites needed

to follow the later study. It gives a platform for the analysis in the

chapters that follow.

• In chapter 3 we prescribe methods to construct entanglement witnesses

for PPT entangled states both in the bipartite and multipartite cases.

We compare their efficacy with other known witnesses and discuss their

experimental relevance.

• In chapter 4 we lay down procedures to construct common witnesses,

following which one may detect a large number of entangled states

both for the PPT and NPT case. We investigate the same for Schmidt

witnesses and follow it up with a discussion on common decomposable

and non-decomposable witnesses.

• In chapter 5 we prove the existence of hermitian operators which can

identify useful resources for performing teleportation which we name

as teleportation witness. We propose such a witness and lay down its

measurement prescription.
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• We construct optimal teleportation witnesses in chapter 6 and illustrate

its experimental representation.

• In chapter 7 we propose hermitian operators that can detect separable

states that are not separable from spectrum. These states can give rise

to entangled states on the use of global unitary operations on them.

The practical relevance of such operators are discussed in conjunction

with entanglement creation through quantum gates.

• The thesis ends with a summary of the works with speculations on

directions of future work.



Chapter 2

Mathematical and Physical

prerequisites

”In mathematics you do not understand things , you just get used to them”.

John von Neumann

In this chapter we revisit some mathematical and physical ideas closely asso-

ciated with the later study. It will give us a framework to analyze and follow

the later chapters.

2.1 Mathematical preliminaries

Vector spaces form the foundation of linear algebra. A vector space V is a

collection of members known as vectors {vi} , equipped with two fundamental

operations namely,

(i) Vector addition vi + vj, where vi, vj ∈ V.
(ii) Scalar multiplication c.vi, where c ∈ F , F denotes the scalar field.

and which obeys the following axioms:

5
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1. vi + vj ∈ V, ∀vi, vj ∈ V

2. vi + (vj + vk) = (vi + vj) + vk,∀vi, vj, vk ∈ V

3. ∃θ ∈ V, such that v + θ = v = θ + v,∀v ∈ V

4. ∀v ∈ V, ∃(−v) ∈ V such that v + (−v) = θ = (−v) + v

5. ∀vi, vj ∈ V, vi + vj = vj + vi

6. ∀c ∈ F and v ∈ V, c.v ∈ V

7. (c1.c2).v = c1.(c2.v), where c1, c2 ∈ F

8. ∃1 ∈ F such that 1.v = v

9. c.(vi + vj) = c.vi + c.vj and (c1 + c2).v = c1.v + c2.v

Generally , C which denotes the set of complex numbers, is taken to be the

field.

We will henceforth use |..〉 as our quantum mechanical notation for a state

vector.

2.1.1 Linear Independence and basis vectors

Suppose we have a set of vectors |vi〉 in a vector space . Then by a linear

combination of the vectors we mean a vector v such that v =
∑

i ci|vi〉, ci ∈ C.

If in a vector space V , any vector v can be expressed as a linear combination

of the vectors from the set {|vi〉}, then {|vi〉} is called a spanning set of V .

A set of vectors |vi〉 is said to be linearly dependent, if there exists at least

one ci 6= 0 such that
∑

i ci|vi〉 = θ. A set of vectors is linearly independent if

it is not linearly dependent.

A linearly independent set of vectors that span a vector space is known as

a basis and the number of vectors in the set is the dimension of the space.

Basis, however is not unique but any two basis sets have the same number

of vectors.
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2.1.2 Linear Operators and Matrices

A operator T from a vector space V to W is said to be linear if

T (
∑
i

civi) =
∑
i

ciTvi (2.1)

We say that a linear operator T is defined on a vector space V if T is a

linear operator from V to V . Matrices are conveniently used in quantum

information science to represent linear operators. Suppose T : V → W is a

linear operator between vector spaces V and W . Suppose {|v1〉, |v2〉, ..., |vm〉}
is a basis for V and {|w1〉, |w2〉, ..., |wn〉} is a basis for W . Then for each j

in the range 1, ..,m one can find complex numbers T1j .... Tnj such that

T |vj〉 =
∑

i Tij|wi〉. The matrix whose elements are the complex numbers

Tij form a matrix representation of the operator T .

2.1.3 Inner Product and Norm

An inner product between two vectors v and w , denoted by (v, w), is a

function V × V → C, which satisfies the following axioms:

1. (u+ v, w) = (u,w) + (v, w)

2. (αv, w) = α(v, w)

3. (v, w) = (w, v)∗ (* denotes complex conjugation)

4. (v, v) > 0, (v, v) = 0 iff v = θ(zero vector)

In quantum mechanical notation , the inner product between two state vec-

tors is written as 〈v|w〉. Norm of a vector v ∈ vector space V , denoted by

‖v‖, is defined as ‖v‖ =
√

(v, v). A unit vector v is such that ‖v‖ = 1. It is

also called a normalized vector . A Hilbert space is an inner product space

complete with respect to the norm induced [Sim63].
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2.1.4 Normal , Unitary and Hermitian operators

Suppose A is a linear operator on a Hilbert space H, then there exists a

unique linear operator A†, such that (Av,w) = (v,A†w). A† is known as the

hermitian conjugate of A. An operator A is called:

• Normal iff AA† = A†A.

• Unitary iff AA† = A†A = I.

• Hermitian iff A = A†.

An eigenvector |v〉 is a non-zero vector corresponding to an operator A such

that A|v〉 = λ|v〉, where λ is the corresponding eigenvalue of the operator.

2.1.5 Convex sets

A set V is convex if for any v1, v2, ..., vn ∈ V

n∑
i=1

λivi ∈ V (2.2)

where
∑n

i=1 λi = 1.

 

Figure 2.1: A convex set

 

Figure 2.2: A non convex set

Convex sets play a significant role in quantum information where very im-
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portant structures can be classified as convex sets and elucidate inherent

geometrical concepts.Convex sets can be separated from each other as well

as from points which do not belong to the set by using separation axioms.This

will form the framework for our later analysis to separate entangled states

from separable ones using entanglement witnesses. There is a very important

separation axiom pertaining to convex sets , namely the geometric form of

the Hahn-Banach theorem [Hol75] which states that:

Hahn-Banach Theorem:

Let S be a convex and compact subset of a Hilbert space. Then a p /∈ S can

be separated from S by a hyperplane.

 

Figure 2.3: Hyperplane Separation

2.2 Qubits and Bloch Sphere

Analogous to classical states 0 and 1, a quantum mechanical system can also

be in a state. In the Dirac notation we write them as |0〉 and |1〉. Here |0〉 and

|1〉 represent an orthonormal set of basis vectors. However, a quantum system

can be in a superposition of the two basis vectors which has no analogue in a

classical situation. Therefore, the simplest quantum mechanical system can

be written as :

|ψqubit〉 = α|0〉+ β|1〉 (2.3)
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where α, β are complex numbers such that |α|2 + |β|2 = 1. In the classical

scenario we can always determine whether a state is in 0 or 1 which however

is not possible in quantum systems. When we measure a qubit we get either

”0” with probability |α|2 or ”1” with probability |β|2.
The squares of the modulus of the complex numbers add to 1. Thus,equation

2.3 can be rewritten as(ignoring an insignificant factor) :

|ψqubit〉 = cos
θ

2
|0〉+ eiω sin

θ

2
|1〉 (2.4)

The above gives an excellent intuitive picture as ω and θ correspond to a point

on the unit 3-dimensional sphere. This sphere is known as the Bloch Sphere

which forms a convenient language in quantum computation and quantum

information. However, the intuition is impeded by the lack of elegant gener-

alization to multiqubit systems.

The notion of a qubit is based on a two dimensional space spanned by |0〉
and |1〉, which can be suitably extended to higher dimensions. For example

a general single qutrit spanned by |0〉, |1〉, |2〉 can be expressed as:

|ψqutrit〉 = α|0〉+ β|1〉+ γ|2〉 (2.5)

with |α|2 + |β|2 + |γ|2 = 1.

2.3 Density Matrix

The density matrix is a convenient language to describe a quantum system.

If the state |ψi〉 occurs with a probability pi, then the density matrix of the

system can be expressed as

ρ =
∑
i

pi|ψi〉〈ψi| (2.6)

ρ is a hermitian operator which is non-negative and Tr(ρ) = 1(Normalization

condition). A state ρ is said to be pure if Tr(ρ2) = 1 and mixed if Tr(ρ2) < 1.

Since a density matrix ρ operates on a state vector |ψ〉 ∈ H, ρ ∈ B(H), where
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B(H) denotes the set of bounded linear operators on H, which again forms

a Hilbert space.

2.4 Pauli matrices

The Pauli matrices are extremely important in quantum information and

computation. They are given by the following matrices:

X ≡ σ1 ≡ σx ≡

(
0 1

1 0

)
, Y ≡ σ2 ≡ σy ≡

(
0 −i
i 0

)

Z ≡ σ3 ≡ σz ≡

(
1 0

0 −1

)
(2.7)

These matrices together with the identity matrix I forms a basis in the space

of single qubit density matrices. The higher dimensional extension of these

matrices are the Gell-Mann matrices [BK08] which is taken up in our later

chapters.

In quantum mechanics, there is an operator that corresponds to each of

the three spin observables for a spin 1/2 particle i.e., the component of the

angular momentum along x, y and z axes respectively. The three operators

are :

Ŝx =
}
2
σx, Ŝy =

}
2
σy, Ŝz =

}
2
σz (2.8)

2.5 Schmidt decomposition and Schmidt num-

ber

Schmidt decomposition is an important tool in quantum information science.

Suppose |Ψ〉 is a pure state of a composite system AB, then there exists

orthonormal states {|iA〉} for A and {|iB〉} for system B, such that [NC10]

|Ψ〉 =
k∑
i

λi|iA〉|iB〉 (2.9)
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where
∑

i λ
2
i = 1, are known as the Schmidt coefficients which are non-

negative real numbers. The number k is the Schmidt rank of the composite

state. The Schmidt number for a pure state is its Schmidt rank.

Mixed states however do not admit an unique decomposition as in eq. (2.9).

An extension of the Schmidt number for mixed states was provided in [TH00],

stated as : A bipartite density matrix % has Schmidt number k if (i) for any

decomposition of % with probabilities pi and vectors |ψi〉, atleast one of the

vectors |ψi〉 has atleast Schmidt rank k and (ii) there exists a decomposition

of % with all vectors |ψi〉 having Schmidt rank at most k.

2.6 Entanglement

We come to the section where we will discuss quantum entanglement. We will

discuss here, entanglement in bipartite and multipartite systems, their vari-

ous detection methods and one of its seminal applications namely quantum

teleportation.

2.6.1 Bipartite Entanglement

Suppose a pure state |ψ〉 ∈ H. If one can find |ψ〉A ∈ HA and |ψ〉B ∈ HB

(HA and HB refer to the subsystems), such that |ψ〉 can be written as,

|ψ〉 = |ψ〉A ⊗ |ψ〉B (2.10)

then |ψ〉 is known to be separable. However, states which cannot be written

as in (2.10) are known as entangled states. A bipartite mixed composite

system ρ is said to be in an entangled state if ρ cannot be expressed in a

convex combination as

ρ =
∑
i

piρ
A
i ⊗ ρBi ,

∑
i

pi = 1 (2.11)

where ρAi and ρBi pertain to the respective subsystems.
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2.6.2 Entanglement of three qubits

Consider first pure three-qubit states. There are two different categories of

separability: the fully separable states that can be written as

|χfs〉A|B|C = |α〉A ⊗ |β〉B ⊗ |γ〉C (2.12)

and the biseparable states that can be written as a product state in the

bipartite system. A biseparable state can be formed if two of the three

qubits form one group. Thus, the three possibilities are :

|χbs〉A|BC = |α〉A ⊗ |ξ〉BC , |χbs〉B|AC = |β〉B ⊗ |ξ〉AC , |χbs〉C|AB = |γ〉C ⊗ |ξ〉AB

A pure state is called genuine tripartite entangled if it is neither fully sep-

arable nor biseparable. Examples of such states are the Greenberger Horne

Zeilinger (GHZ) state [GHZ89] and the W state [ZHG92, DVC00].

The classification for mixed states follows from [ABLS01, DC00], where a

mixed state is said to be fully separable if it can be expressed as convex

combination of fully separable states.

ρfs =
∑
i

pi|χfsi 〉〈χ
fs
i | (2.13)

Similarly, for biseparable states

ρbs =
∑
i

pi|χbsi 〉〈χbsi | (2.14)

States which are neither fully separable nor biseparable are fully entangled.

There are two important classes of fully entangled states. A fully entangled

state is said to belong to the W class if can be written as a convex combination

of W-type pure states,

ρW =
∑
i

pi|χWi 〉〈χWi | (2.15)
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on the other hand a state is said to belong to GHZ class if it can be written

as a convex combination of GHZ-type states,

ρGHZ =
∑
i

pi|χGHZi 〉〈χGHZi | (2.16)

2.6.3 Bound Entanglement

Different methods to detect entanglement actually try to find the the quantum-

classical demarcation line. Entanglement is not very robust in nature. It is

vulnerable against the decoherence effect of the environment.Thus it is im-

portant to analyze those entangled states which have a close proximity with

the set of separable states and also inspect if some entangled states with a

high quantity of entanglement can be created from weakly entangled states

for the sake of quantum information processing tasks.In fact this is actu-

ally the process known as distillation of entanglement where many entangled

states which possess a weak entanglement can be processed to obtain a fewer

number of states having a high degree of entanglement.

Entanglement distillation [BBP+96] is the process of transforming N copies

of an arbitrary entangled state ρ into approximately S(ρ)N Bell pairs (where

S(ρ) is the von Neumann entropy of ρ), using only local operations and clas-

sical communication (LOCC)[BBPS96].Distillation [BBP+96] can in this way

overcome the degenerative influence of noisy quantum channels by transform-

ing previously shared less entangled pairs into a smaller number of maximally

entangled pairs (Bell states). However there are entangled states from which

no entanglement can be distilled, accordingly called bound entangled states

[HHH98] and hence cannot be directly used for quantum information process-

ing .Interestingly, entangled states that are positive under partial transpose

(PPT) (i.e PPTES) were shown to be bound entangled. There are exam-

ples of bound entangled states both in bipartite[Hor97] and multipartite case

[ABLS01]. Of specific importance in this regard are edge states[LKCH00]

which lie at the boundary of PPT and NPT entangled states.
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2.6.4 Different detection methods

Quantum entanglement in general is not easy to detect with the situation

getting more involved in high dimensions. However, literature in quantum

information contains various prescriptions to detect entanglement, some of

which we discuss in this segment[HHHH09, GT09].

1. The positive partial transposition(PPT) Criterion : Any density matrix

of a composite quantum system in a chosen basis can be written in the

form

ρ =
N∑
i,j

M∑
k,l

ρij,kl|i〉〈j| ⊗ |k〉〈l| (2.17)

Given this decomposition the partial transposition with respect to one

subsystem is given by

ρTA =
N∑
i,j

M∑
k,l

ρji,kl|i〉〈j| ⊗ |k〉〈l| (2.18)

Any bipartite separable state ρ has a positive partial transposition

[Per96] , i.e ρTA ≥ 0.

If ρ is a state in 2 ⊗ 2 or 2 ⊗ 3 system , then ρ is a separable state iff

ρTA ≥ 0[HHH96, Stø63, Wor76]. For higher dimensions this is not the

case, i.e there are entangled states with positive partial transposition.

2. Computable Cross norm and realignment criterion[CCNR][CW03, Rud00]:

For a density matrix ρ , the Schimdt decomposition can be expressed

as :

ρ =
∑
k

λkO
A
k ⊗OB

k (2.19)

where λk ≥ 0 and OA
k , O

B
k are orthonormal bases of the spaces HA and

HB.

The criteria states that if the state ρ is separable , then the sum of all
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λk in the above equation is smaller than one.∑
k

λk ≤ 1

Hence
∑

k λk > 1 signals that the state must be entangled.

3. The range criteria provides an approach to detect entangled states in

some cases when the PPT criteria fails[Hor97].It states that if a state

ρ is separable,then there is a set of product vectors |aibi〉 such that the

set |aibi〉 spans the range of ρ as well as the set |aib∗i 〉 spans the range

of ρTB . Here ∗ denotes conjugation.

4. The majorization criterion gives a separation criteria based on the re-

lation of the density matrix of the state to the density matrix of the

reduced state[NK01]. Consider P = {p1, p2, ...} to be the decreasingly

ordered eigenvalues of ρ and Q = {q1, q2, ...} the decreasingly ordered

eigenvalues of the reduced density matrix ρA. The majorization criteria

states that , if ρ is separable then

k∑
i=1

pi ≤
k∑
i=1

qi (2.20)

holds for all k.

5. There some strong algorithmic approaches to detect entanglement,one

of them being the method of symmetric extensions [DPS02, Wer89a].

6. The PPT criteria is a part of a more general method of detection of

entanglement based on positive maps. Let HB and HC be the Hilbert

spaces and B(Hi) be the space of bounded linear operators on it. Then

a linear map Λ : B(HB)→ B(HC) is said to be positive if it preserves

positivity and hermiticity. A positive map Λ is called a completely

positive map if IA ⊗ Λ is also positive. A state ρ is separable iff for all

positive maps Λ , the following relation holds [HHH96]

IA ⊗ Λ(ρ) ≥ 0 (2.21)
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Another example of a positive map which is not completely positive is

the reduction map [CAG99, HH99], defined on one subsystem as

Λr(X) = Tr(X)I −X (2.22)

Consequently, a separable state fulfills IA ⊗ Λr(ρ) = ρA ⊗ I − ρ ≥ 0.

The methods underlined above constitute a small portion of a substantial

literature on detection of entanglement. For a more detailed discussion one

may consult [HHHH09, GT09].

2.7 Entanglement Witnesses

Entanglement witnesses constitute a very general method to distinguish en-

tangled states from the separable ones. Since, entanglement witnesses arise

from the geometry of entangled states, it can be used to characterize the set

of separable states. They form a potent tool in detection of entanglement,

as being hermitian,they provide experimentally viable procedures of entan-

glement detection. This section studies entanglement witnesses and their

different methods of construction.

Entanglement witnesses [HHH96, Ter00, GT09, HHHH09] rely on the Hahn-

Banach theorem. Since the set of separable states is convex and compact ,

one can construct a hyperplane which separates an entangled state from the

set of all separable states. In fact, the entanglement witnesses provide for a

strong criterion because of its completeness, i.e, a state is entangled if and

only if there is a witness that detects it[HHH96].

2.7.1 Definition

Let SEP and ENT denote the set of all separable states and entangled states

respectively.A hermitian operator W with atleast one negative eigenvalue will
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be called an entanglement witness if the following two conditions are satisfied

(i)Tr(Wσ) ≥ 0, ∀σ ∈ SEP

(ii)∃ρ ∈ ENT s.t Tr(Wρ) < 0 (2.23)

Therefore a negative expectation value of a witness on a state indicates the

presence of entanglement. The hyperplane is constituted by all those states χ

for which the expectation value of the witness is zero, i.e, represented by the

equation Tr(Wχ) = 0. However entanglement witnesses are not universal as

there does not exist a single witness that detects all entangled states. If a

witness can be expressed as

W = P +QTB , P ≥ 0, Q ≥ 0 (2.24)

then the witness is called decomposable otherwise it is called non-decomposable

or indecomposable. Decomposable witnesses cannot detect entangled states

with a positive partial transpose.

2.7.2 Different methods of construction of Entangle-

ment Witnesses

There are numerous methods to construct entanglement witnesses [GT09],some

of them are enumerated below:

1. Let ρ be a state having a negative partial transposition . Let |η〉 be

an eigenvector corresponding to a negative eigenvalue of the partial

transposed state ρTA . Then (|η〉〈η|)TA is a decomposable witness that

detects ρ as Tr((|η〉〈η|)TAρ) = Tr((|η〉〈η|)ρTA) < 0.

2. When ρ is a state that violates the CCNR criterion , then W = I −∑
k O

A
k ⊗ OB

k is an entanglement witness for ρ, where OA
k , O

B
k are the

observables from the Schimdt decomposition [YL05, GMTA06].

3. The states in the neighbourhood of an entangled state may also be

entangled.Witness operators can be constructed from this point of view.
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Thus W = αI−|ψ〉〈ψ| is an witness , where α = maxσTr(σ|ψ〉〈ψ|) and

|ψ〉 is an entangled state . The maximization is done over all separable

states σ.

4. Edge states(a special class of PPT entangled states and we will define

them later) was studied extensively in [LKCH00] and a non-decomposable

witness was proposed exclusively for edge states δ which was of the form

W δ = P +QTB − εI, P ≥ 0, Q ≥ 0, 0 < ε ≤ ε0 (2.25)

Since edge states are not of full rank neither are their partial transpose

so P and Q can always be chosen as projectors from the respective

kernels of δ and δTB . ε0 was defined as

ε0 = inf|e,f〉〈e, f |P +QTB |e, f〉 (2.26)

The above mentioned choices entailed that

Tr(W δσ) ≥ 0 ∀ separable σ and

Tr(W δδ) < 0 (2.27)

5. Geometry provides another perspective to the construction of entan-

glement witnesses [PR02, BNT02, BDHK05]. If χe is an entangled

state and σc is the closest separable state to χe in the Hilbert Schmidt

norm (‖X‖ =
√
Tr(X†X), then 1

N
(σc − χe + Tr[σc(χe − σc)]I), with

N = ‖χe−σc‖ is an entanglement witness. However, finding the nearest

separable state is a computationally hard task except for some special

states.

6. Indecomposable witnesses are indispensable for detecting entangled

states having a positive partial transpose. Some of those constructions

can be found in [CK08, CK07].

7. Semidefinite programs used to implement the algorithm for symmetric

extension[DPS02] give an entanglement witness as a by product.
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2.7.3 Relation between Entanglement witnesses and

Positive maps

Jamiolkowski Isomorphism[Jam72]: This isomorphism gives the very im-

portant relation between entanglement witness and positive maps. Given an

operator W ∈ B(HB ⊗HC) and a map ε , then the relation is

ε(ρ) = TrB(WρTB) (2.28)

The following are very important observations[Lew04]:

(i) W ≥ 0 iff ε is a completely positive map.

(ii) W is an entanglement witness iff ε is a positive map(but not completely

positive).

(iii) W is a decomposable entanglement witness iff ε is decomposable.

(iv) W is a non-decomposable entanglement witness iff ε is non-decomposable

and positive.

2.8 Bell’s Inequality

In any discussion of entanglement witnesses, Bell’s inequalities occupy an

indispensable space as the inequalities are considered to be the foremost en-

tanglement witnesses. Although originally it was Bell’s reaction[Bel64] to the

EPR paradox three decades earlier[EPR35], yet in the years that followed it

came up with various manifestations. From the days of its inception it has

constituted a major discussion point of the foundations of quantum mechan-

ics. However, the practical implementations of the inequalities match their

foundational importance. One such domain is the theory of entanglement

witness.

Observers located at remote positions make measurements on entangled pairs

of particles which had an interaction at some point of time. On the assump-

tion of hidden variables, they lead to stringent bounds on the possible values

of the correlation of subsequent measurements that can be obtained from the

particle pairs. Bell discovered that the predictions of quantum mechanics in
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certain cases, constitute a violation of these bounds.

Let us consider a simple example of a bipartite system . We assume that

Alice can measure two quantities at her part, labelled A1 and A2, while Bob

can also measure two quantities at his part,called B1 and B2. The results

of these experiments are a1, a2 and b1, b2 and we assume that these results

can take the values +1,-1. Expectation values can be obtained simply by

averaging the measurement results, 〈AiBj〉 = 1
M

∑M
k=1 ai(k)bj(k). Now the

Bell-CHSH inequality [CHSH69] can be formulated as :

〈A1B1〉+ 〈A2B1〉+ 〈A1B2〉 − 〈A2B2〉 ≤ 2 (2.29)

The above inequality is called a Bell’s inequality.

In quantum mechanics the violation implies that the state is entangled. How-

ever the converse is not true , there are entangled states which do not violate

Bell’s inequality.

2.9 States which are separable from spectrum

Even though there are numerous methods to witness the signature of en-

tanglement in quantum systems, verifying separability is a hard task[Gur03].

Thus, the set of separable states too poses significant questions. One very in-

triguing existence is claimed by the absolutely separable states [KŻ01] within

the set of separable states. The absolutely separable states unlike other sep-

arable states remain separable under any factorization of the corresponding

Hilbert space. These states are also termed as states which are separable

from spectrum [Kni03]. In fact a separable state σ is separable from spec-

trum if UσU † is separable for any unitary operator U .

On the other hand states which are not absolutely separable are significant

in the sense that such states can be used as initial states for entanglement

creation[SKK+00, RNO+00, KC01, LL09, KRS11] using global unitary op-

erations. As no global unitary operator can convert an absolutely separable

state into an entangled state, non-absolutely separable states are important

in this scenario. However, it is important to determine which states are
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non-absolutely separable ,a study which we report in chapter 7.

2.10 Entanglement Measures

Quantification of entanglement occupies a very important place in quantum

information science. Since an entanglement measure Q quantifies entangle-

ment , certain properties are desirable. However all quantification procedures

available do not satisfy all the desired properties. The properties are men-

tioned below [VPRK97, GT09, HHHH09]:

1. Q(σ) must vanish on any separable state σ.

2. An entanglement measure should be invariant under local unitary trans-

formations.

3. An entanglement measure should not increase on average under local

operations and classical communications(LOCC).

4. A measure should decrease on mixing two or more states.

5. Requirement of additivity and full additivity i.e .,

Q(ρ⊗n) = nQ(ρ) (2.30)

Q(ρ1 ⊗ ρ2) = Q(ρ1) +Q(ρ2) (2.31)

We now lay down few measures existing in literature[HHHH09, GT09]:

1. Concurrence [HW97, Woo98, RBC+01]: Concurrence is one of the most

popular entanglement measures. For pure states it is defined as :

C(|ψ〉) =
√

2[1− Tr(ρ2A)] (2.32)

where ρA is the reduced state of |ψ〉 given by ρA = TrB(|ψ〉〈ψ|). For a

general two qubit density matrix ρ the concurrence is given as:

C(ρ) = max(λ1 − λ2 − λ3 − λ4, 0) (2.33)
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where λi are the decreasingly ordered eigenvalues of the matrix A =√
ρ1/2Y ⊗ Y ρ∗Y ⊗ Y ρ1/2, Y being the Pauli matrix.

2. Negativity [VW02, ŻHSL98]: Negativity measures to what degree the

PPT criterion is violated, formally written as :

N(ρ) =
‖ ρTA ‖ −1

2
(2.34)

where ‖ ... ‖ is the trace norm.

3. Relative entropy of entanglement [VP98]: The relative entropy of en-

tanglement is given by :

Q(ρ) = infσS(ρ ‖ σ) (2.35)

where the infimum is taken over all separable states σ and S(ρ ‖ σ) =

Tr[ρlog(ρ)− ρlog(σ)].

4. Entanglement witnesses can be utilized to quantify entanglement. A

general expression for the quantification of entanglement via witness

operators is [Bra05]:

Q(ρ) = max[0,−minW∈MTr(Wρ)] (2.36)

where M is the intersection of the set of entanglement witnesses with

another set such that M is compact.

These were just a few of the measures . For a detailed discussion one may

refer to [PV07, HHHH09].

2.11 Quantum Teleportation

The notion of separation axiom now no longer remains confined to the mere

construction of entanglement witnesses. Witness operators are now be-

ing constructed to capture other manifestations of quantum states namely
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mixedness[MPM13],thermodynamical properties[BV04],cryptography[BHH12],

discord[DVB10, BC10, GB13, GA12] etc. Consequently witness operators

have gone beyond the realm of mere detection.Witnesses are now gradually

being linked with various quantum information processing tasks. One such

task that we probe upon in this thesis is Quantum Teleportation [BBC+93].

Quantum teleportation is a seminal information processing task where now

the present challenges are to explore the experimental frontiers [BPM+97,

UJA+04].We revisit the basic protocol of teleportation[NC10] in this section

to facilitate our later study.

Suppose, Alice wants to send an unknown state |χ〉 = α|0〉 + β|1〉 to Bob.

Let them share a maximally entangled state (say the Bell state |φ+〉 =
1√
2
(|00〉 + |11〉). Therefore, the three party system can be written in the

form,
1√
2

[α|0〉(|00〉+ |11〉) + β|1〉(|00〉+ |11〉)] (2.37)

where the first two qubits belong to Alice and the last to Bob.

Alice sends her two qubits through the CNOT gate,to obtain the state in the

form,
1√
2

[α|0〉(|00〉+ |11〉) + β|1〉(|10〉+ |01〉)] (2.38)

Applying the Hadamard gate to the first qubit she gets

1

2
[α(|0〉+ |1〉)(|00〉+ |11〉) + β(|0〉 − |1〉)(|10〉+ |01〉)] (2.39)

Regrouping the terms,

1

2
[|00〉(α|0〉+β|1〉) + |01〉(α|1〉+β|0〉) + |10〉(α|0〉−β|1〉) + |11〉(α|1〉−β|0〉)]

(2.40)

Alice’s measurement and Bob’s state depending upon her measurement can

have the following four possibilities with equal probability: {00, α|0〉+β|1〉},
{01, α|1〉+β|0〉}, {10, α|0〉−β|1〉}, {11, α|1〉−β|0〉}, wherein, the first mem-

ber corresponds to Alice’s measurement and the second corresponds to Bob’s

state.

Now, Alice has to communicate two classical bits to Bob to convey her mea-
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surement outcome.If she communicates 00 then Bob has to do nothing as his

state is already in the state χ. If she communicates 01,then Bob has to apply

X gate to his qubit to change it to χ. In case of the communication being

10, Bob has to apply Z gate to his qubit. In the last case Bob has to apply

X gate followed by a Z gate to retrieve χ. The gates used in the protocol

are transformation brought about by the following operators:

X =

(
0 1

1 0

)
, Z =

(
1 0

0 −1

)
, CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 and the Hadamard

gate H = 1√
2

(
1 1

1 −1

)
.

The Bell state that is shared between Alice and Bob represents the quantum

channel for teleportation. It can be replaced by other entangled states[LK00].

The protocol has been generalized to include multipartite channels[MP08,

AP06] and also bipartite channels in higher dimensions. However, differ-

ent channels have different efficacy represented by the fidelity of teleporta-

tion. Fidelity in turn is dictated by a parameter known as fully entangled

fraction[BDSW96, HHH99a, ZLFW10]. The fully entangled fraction (FEF)

[HHH99a] is defined for a bipartite state ρ in d⊗ d dimensions as

F (ρ) = maxU〈ψ+|U † ⊗ IρU ⊗ I|ψ+〉 (2.41)

where |ψ+〉 = 1√
d

∑d−1
i=0 |ii〉 and U is a unitary operator. A quantum channel

is useful for teleportation if it can provide a fidelity higher than what can

be done classically. The fidelity (f) depends on the FEF of the state, given

by f = Fd+1
d+1

[HHH99a]. A state in d⊗ d dimensions works as a teleportation

channel if its FEF > 1
d

[HHH99a, VJN00, ZLFW10]. It is an intriguing aspect

that not all entangled states are useful for teleportation [ZLFW10]. So, one

may want to detect entangled states which can be useful for the protocol, an

investigation that we address in chapter 5.
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2.12 Summary

This chapter captures the basic essentials needed to follow the later study.

The physical insights that are exploited in later chapters have been discussed

here with the corresponding mathematical aspects to maintain the logical

pedagogy. However there remain some finer notions which will be elucidated

in the later discussions as and when necessary. Entanglement, being such

an important player in quantum information processing tasks, its detection

remains a major issue which we address in the next chapter. More so, for

those entangled states admitting a positive partial transpose, as they remain

unnoticed by most standard detection procedures including Bell’s inequalities

[Bel64, CHSH69].



Chapter 3

Entanglement Witness

Operator for edge states

3.1 Prelude

Quantum entanglement continues to have an enigmatic presence since the

days of its inception. Towards the end of the last century and with the

turn of the century the theoretical proposals for possible applications of

entanglement[EPR35, Sch35] increased manifolds. This brought a sea change

in quantum computation and information with the advent of quantum com-

putation [BDEJ95] , teleportation [BBC+93].Experimental challenges [BPM+97]

broadened the frontiers of both informational and computational tasks.

The significance of entanglement in state of the art technologies motivated

scientists to take up the challenge of its detection[GT09, HHHH09], more so

incited by the paradoxical behaviour. For low dimensional (2 ⊗ 2 and 2 ⊗
3) states there exist simple necessary and sufficient conditions for separabil-

ity [Per96, HHH96] which is based on the fact that separable states have a

positive partial transpose (PPT). However, in higher dimensional systems all

states with negative partial transpose(NPT) are entangled but there are en-

tangled states which have a positive partial transposition [Hor97, BDM+99].

27
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Thus the separability problem can be framed as finding whether states with

positive partial transposition are entangled. Of specific importance in this

context are the so called edge states [LKCH00] which lie at the boundary of

PPT and NPT states. An interesting character that an edge state shows is

extreme violation of the range criterion [Hor97] which states that there ex-

ists no product vector |e, f〉 belonging to the range of the edge state % such

that |e, f ∗〉(conjugation is done with respect to the second system) belongs

to the range of %TB . Since the edge states are PPT entangled states so par-

tial transposition method fails to detect them and also it is very difficult to

identify the edge states by range criterion. So it becomes necessary to find

an alternate method to detect the edge states.

Since, standard detection procedures complicates the detection of PPT en-

tangled states, witnesses can be pragmatically used for the purpose. However,

witnesses which are non-decomposable in nature are of prime importance in

this scenario as decomposable witnesses fail to identify PPT entangled states

as the partial transposition is itself decomposable[HHH96]. Terhal first intro-

duced non-decomposable positive linear maps based on entangled quantum

states using the notion of unextendible product basis[Ter01]. Thereafter

Lewenstein et. al. worked extensively on non-decomposable witnesses and

provided elegant prescriptions for their optimization[LKCH00]. In this chap-

ter we propose a new non-decomposable witness for edge states and make

a comparative analysis of it with other known witness. We also provide an

insight as to how an experimental realization can be done of our proposed

witness with illustrations of the action of the operator from different dimen-

sions.

The chapter follows the following structure: In section 3.2 we cite certain

related definitions and terms. In section 3.3 we revisit the non-decomposable

witness operator and find the condition for which it is finer. In section 3.4 we

give the construction of the witness, its extension to multipartite edge states

and discuss its experimental realization. In section 3.5 we compare our pro-

posed witness with that in [LKCH00]. In section 3.6 we provide explicit

examples. Lastly we end with conclusions.
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3.2 A few definitions and results

Definition-1: The kernel of a given density matrix ρ ∈ B(HA ⊗ HB) is

defined as the set of all eigenvectors corresponding to the zero eigenvalue of

ρ in the Hilbert space HA⊗HB. Mathematically, ker(ρ) = {|x〉 ∈ HA⊗HB :

ρ|x〉 = 0}.
Definition-2: A PPT entangled state δ is called an edge state if for any

ε > 0 and any product vector |e, f〉, δ′ = δ− ε|e, f〉〈e, f | is not a PPT state.

where P and Q are positive semi-definite operators.

Definition-3: Given two entanglement witnesses W1 and W2, a witness W1

is said to be finer than another witness W2 if DW2 ⊆ DW1 , where the set DW

is defined as DW = {ρ ≥ 0, such that Tr(Wρ) < 0}.
Result-1: Given two non-decomposable witnesses W1 and W2, W1 is finer

than W2, if W2 can be written as [LKCH00]

W2 = (1− λ)W1 + λD (3.1)

where D is a decomposable witness operator and 0 ≤ λ < 1 .

Result-2: A witness operator D is decomposable iff [LKCH00]

Tr(Dρ) ≥ 0, for PPT entangled state ρ (3.2)

3.3 Revisiting non-decomposable witnesses

Lewenstein et. al. [LKCH00] studied the edge states extensively and intro-

duced a non-decomposable witness exclusively for edge states δ which was of

the form

W δ = P +QTB − εI, P ≥ 0, Q ≥ 0, 0 < ε ≤ ε0 (3.3)

Since edge states are not of full rank neither are their partial transpose,so

P and Q can always be chosen as projectors from the respective kernels of δ
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and δTB . ε0 was defined as

ε0 = inf|e,f〉〈e, f |P +QTB |e, f〉 (3.4)

The above mentioned choices entailed that

Tr(W δσ) ≥ 0 ∀ separable σ and

Tr(W δδ) < 0 (3.5)

When we are willing to detect PPT entangled states which are not edge states

through the witness operator W δ then in this situation the task becomes very

difficult in choosing the positive semi-definite operators P and Q. This is

because of the fact that the given PPT entangled state ρ (not edge state) or

the state described by its partial transposition can be of full rank. Therefore

the detection of PPT entangled state (excluding edge states) using W δ turned

out to be a difficult task. So our focus should be on searching the witness

operator which can be easily constructed and also detects PPT entangled

state together with edge states. We start our search by considering a PPT

entangled state ρ. Next we impose two assumptions on ρ:

A1: The PPT entangled state ρ is not an edge state.

A2: ρ is not of full rank but ρTB is.

With these assumptions, P can be chosen as mentioned earlier i.e. P can

be chosen as a projector on the kernel of ρ.Since there are no vectors in the

kernel of ρTB(ρTB is of full rank), we take Q as a null operator. These choices

of P and Q reduces W δ to W ρ, which is given by

W ρ = P − ε′I, P > 0, 0 < ε′ ≤ ε1 (3.6)

where

ε1 = inf|e,f〉〈e, f |P |e, f〉 (3.7)

Thus, the PPT entangled state ρ which satisfies the above mentioned as-

sumptions can be detected by the non-decomposable witness operator W ρ.
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Next our task is to show that W ρ is finer than W δ.

The result given in (3.1) clearly authenticates that the witness operator (3.6)

is finer than its counterpart (3.3) because (3.3) can be written as

W δ = (1− λ)W ρ + λD, 0 ≤ λ < 1 (3.8)

taking D = QTB .

Thus, W ρ gives us a more general entanglement witness which can detect

some PPT entangled states along with edge states, or in other words, W ρ is

finer than W δ.

Illustration: As an illustration we consider the PPT entangled state [HHH99b]

ρα =
2

7
|ψ+〉〈ψ+|+ α

7
ρ+ +

5− α
7

ρ− (3.9)

where

ρ+ =
1

3
(|01〉〈01|+ |12〉〈12|+ |20〉〈20|)

ρ− =
1

3
(|10〉〈10|+ |21〉〈21|+ |02〉〈02|)

|ψ+〉 =
1√
3

2∑
i=0

|ii〉 (3.10)

The state is PPT entangled for 3 < α ≤ 4 and edge state for α = 4. The

rank of ρα is 7 whereas the rank of ρTBα is 9. Now using the prescription

described above for the construction of the witness operator (3.6), we can
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easily construct the witness operator for the PPT entangled state ρα as

W ρα =



1− ε′ 0 0 0 −1 0 0 0 0

0 −ε′ 0 0 0 0 0 0 0

0 0 −ε′ 0 0 0 0 0 0

0 0 0 −ε′ 0 0 0 0 0

−1 0 0 0 2− ε′ 0 0 0 −1

0 0 0 0 0 −ε′ 0 0 0

0 0 0 0 0 0 −ε′ 0 0

0 0 0 0 0 0 0 −ε′ 0

0 0 0 0 −1 0 0 0 1− ε′


(3.11)

We observe that Tr(W ραρα) = −ε′ < 0.

3.4 Construction of the witness and its ex-

perimental realization

In this section we propose a new non-decomposable witness operator and

thereafter show that it is an operator which detects the edge states. Also we

study its extension in the multipartite system and further discuss its exper-

imental realization.

Theorem 3.1. An operator W is a non-decomposable witness operator for

an edge state δ if it can be expressed in the form

W = QTB − k(I − P ) (3.12)

where P is a positive semi-definite operator and Q is a positive definite op-

erator and TB denotes the partial transposition over the second subsystem.

Proof: To prove that W is a non-decomposable witness operator for an

edge state δ, it is sufficient to verify the two witness inequalities given in

(2.23) for W .
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(i) We have to show that Tr(Wσ) ≥ 0 ∀ separable state σ.

Tr(Wσ) = Tr((QTB − k(I − P ))σ)

= Tr(QσTB)− k(1− Tr(Pσ)) (since Tr(QTBσ) = Tr(QσTB))

= ((1− Tr(Pσ)))[
Tr(QσTB)

(1− Tr(Pσ))
− k] (3.13)

We can always select a value of k from the interval 0 < k ≤ k0 so that

Tr(Wσ) ≥ 0, where k0 is given by

k0 = min
Tr(QσTB)

1− Tr(Pσ)
(3.14)

Here the minimum is taken over all separable states σ.

(ii) Now it remains to be shown that Tr(Wδ) < 0 for an edge state δ.

Since δ and δTB have some vectors in their kernel so we get some freedom

to choose the operators P and Q as the projectors on ker(δ) and ker(δTB)

respectively. Therefore, we have Tr(Pδ) = 0 and Tr(QδTB) = 0.

Tr(Wδ) = Tr(QTBδ)− kTr((I − P )δ)

= Tr(QδTB)− k(1− Tr(Pδ))

= −k (3.15)

Now using the inequality 0 < k ≤ k0 and exploiting equations (3.14) and

(3.15), we find that Tr(Wδ) < 0. Hence we are able to prove that the

non-decomposable witness operator proposed in the theorem detects an edge

state.

Corollary: The non-decomposable witness can also be constructed as

W ′ = P − k(I −QTB), 0 < k ≤ k0, P > 0, Q ≥ 0 (3.16)

where

k0 = minσ
Tr(Pσ)

1− Tr(QσTB)
(3.17)
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With similar arguments it can be shown that W ′ also detects edge states.

Particularly if QTB = 0, i.e. if the state described by the partially transposed

density operator has no vectors in its kernel then witness operator (3.16)

reduces to (3.6). Hence in this case the witness operator (3.16) detects not

only edge states but also other PPT entangled states.

Extension of the witness for edge states in 3 qubits: Since edge

states are also found in tripartite systems so we extend the prescription of

our proposed entanglement witness operator in 3-qubit systems.

For a given tripartite edge state δtri ∈ B(H1 ⊗ H2 ⊗ H3), we define the

non-decomposable witness operator as:

Wtri = QTX − k0(I − P ), X = 1, 2, 3 (3.18)

P=Projector on ker(δtri) and Q= Projector on ker(δTXtri ), where TX denotes

the transpose taken with respect to any one of the subsystems. As before we

define

k0 = min
Tr(QTXσ)

Tr((I − P )σ)
(3.19)

where the minimum is taken over all separable states σ.

If now we take 0 < k ≤ k0 and use Wtri = QTX − k(I − P ), then we obtain

Tr(Wtriδtri) = −k < 0 (3.20)

For the above choice of k0 given in (3.19),we can always find some k for which

Tr(Wtriσ) ≥ 0.

Experimental Realization: Our task is now to show that our proposed

witness operator can be used in an experimental setup to detect the edge state

in a qutrit system.The quantity to be measured is the expectation value

〈W 〉 = Tr(Wρ) (3.21)

Here we rewrite the witness operator defined in (3.12) for a certain edge state

in a qutrit system in terms of Gell-Mann matrices [BK08] and thereby finding
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the expectation value of these physical operators in order to experimentally

detect entanglement.

The generalized Gell-Mann matrices are higher dimensional extensions of the

Pauli matrices (for qubits) and are hermitian and traceless. They form an

orthogonal set and basis. In particular, they can be categorized for qutrits

as three different types of traceless matrices :

(i) three symmetric Gell-Mann matrices

Λ01
s =

 0 1 0

1 0 0

0 0 0

 , Λ02
s =

 0 0 1

0 0 0

1 0 0

 , Λ12
s =

 0 0 0

0 0 1

0 1 0

(3.22)

(ii) three antisymmetric Gell-Mann matrices

Λ01
a =

 0 −i 0

i 0 0

0 0 0

 , Λ02
a =

 0 0 −i
0 0 0

i 0 0

 ,

Λ12
a =

 0 0 0

0 0 −i
0 i 0

 (3.23)

(iii) two diagonal Gell-Mann matrices

Λ0 =

 1 0 0

0 −1 0

0 0 0

 , Λ1 =

 1/
√

3 0 0

0 1/
√

3 0

0 0 −2/
√

3

 (3.24)

Let us consider a qutrit described by the density operator (3.9). Our pre-

scribed witness (3.12) for the state with α = 4 is given in matrix form as
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A =



0 0 0 0 −2 0 0 0 −k − 2

0 1− k 0 0 0 0 0 0 0

0 0 4− k 0 0 0 0 0 0

0 0 0 4− k 0 0 0 0 0

−2 0 0 0 0 0 0 0 −k − 2

0 0 0 0 0 1− k 0 0 0

0 0 0 0 0 0 1− k 0 0

0 0 0 0 0 0 0 4− k 0

−k − 2 0 0 0 −k − 2 0 0 0 k


(3.25)

Writing the witness A in terms of the Gell-Mann matrices and taking the

expectation value we obtain,

〈A〉 = −〈Λ01
s ⊗ Λ01

s 〉+ 〈Λ01
a ⊗ Λ01

a 〉 −
k + 2

2
(〈Λ02

s ⊗ Λ02
s 〉 − 〈Λ02

a ⊗ Λ02
a 〉)

−k + 2

2
(〈Λ12

s ⊗ Λ12
s 〉 − 〈Λ12

a ⊗ Λ12
a 〉) +

2k − 5

4
〈Λ0 ⊗ Λ0〉

− 9

4
√

3
(〈Λ0 ⊗ Λ1〉 − 〈Λ1 ⊗ Λ0〉) +

22k − 45

36
〈Λ1 ⊗ Λ1〉

−k
9

(〈Λ1 ⊗ I〉+ 〈I ⊗ Λ1〉) +
15− 5k

9
〈I ⊗ I〉 (3.26)

Thus for an experimental outcome 〈A〉 < 0, the state is entangled.

For qutrits the Gell-Mann matrices can be expressed in terms of eight physical

operators , the observables Sx, Sy, Sz, S
2
x, S

2
y , S

2
z , {Sx, Sy}, {Sy, Sz}, {Sz, Sx}

of a spin-1 system , where
−→
S = {Sx, Sy, Sz} is the spin operator and {Si, Sj} =

SiSj + SjSi (with i, j = x, y, z) denotes the corresponding anticommutator.

The representation of the Gell-Mann matrices in terms of the spin-1 operators
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is as follows [BK08]:

Λ01
s =

1√
2~2

(~Sx + {Sz, Sx}), Λ02
s =

1

~2
(S2

x − S2
y),

Λ12
s =

1√
2~2

(~Sx − {Sz, Sx}), Λ01
a =

1√
2~2

(~Sy + {Sy, Sz}),

Λ02
a =

1

~2
{Sx, Sy}, Λ12

a =
1√
2~2

(~Sy − {Sy, Sz}),

Λ0 = 2I +
1

2~2
(~Sz − 3S2

x − 3S2
y),

Λ1 =
1√
3

(−2I +
3

2~2
(~Sz + S2

x + S2
y)) (3.27)

All eight physical operators can be represented by the following matrices :

Sx =
~√
2

 0 1 0

1 0 1

0 1 0

 , Sy =
~√
2

 0 −i 0

i 0 −i
0 i 0

 ,

Sz = ~

 1 0 0

0 0 0

0 0 −1

 , S2
x =

~2

2

 1 0 1

0 2 0

1 0 1

 ,

S2
y =

~2

2

 1 0 −1

0 2 0

−1 0 1

 , {Sx, Sy} = ~2

 0 0 −i
0 0 0

i 0 0

 ,

{Sy, Sz} =
~2√

2

 0 −i 0

i 0 i

0 −i 0

 , {Sz, Sx} =
~2√

2

 0 1 0

1 0 −1

0 −1 0

 (3.28)

Therefore experimental detection of entanglement can also be done by writing

the Gell-Mann matrices in terms of spin-1 operators and then taking the

expectation value.
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3.5 Detection and Comparative analysis

Consider the two witness operators W δ and W given in (3.3) and (3.12)

respectively and let us investigate the situation when W δ detects a larger set

of PPT entangled state than W or vice-versa. Also we observe that

DW ∩DW δ 6= φ (3.29)

Equation (3.29) depicts the fact that there exist PPT entangled states which

are detected by both W and W δ.

Case-I: If the entanglement witness W be finer than W δ then using (3.1),

we can always write

W δ = (1− λ)W + λD

⇒ P +QTB − εI = (1− λ)(QTB − k(I − P )) + λD

⇒ D =
1− k + λk

λ
P +QTB +

k − ε− λk
λ

I (3.30)

From (3.30) and using the Result-2, we get

1− k + λk ≥ 0, k − ε− λk ≥ 0 (3.31)

which gives

k ≤ 1

1− λ
, k ≥ ε

1− λ
(3.32)

Thus W is finer than W δ when k ∈ [ ε
1−λ ,

1
1−λ ].

Case-II: If the entanglement witness W δ be finer than W then we can

proceed in similar way as above and find that W δ is finer than W when

k ∈ [1− λ, ε− λε].
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3.6 Examples

In this section we explicitly construct our proposed witness operator for dif-

ferent edge states living in C3 ⊗ C3 and C2 ⊗ C2 ⊗ C2 and express them in

the matrix form.

Example 1: We start with the edge state in C3⊗C3 as proposed in [Hor97].

The state and its partial transpose is :

ρa =
1

8a+ 1



a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2

0
√
1−a2
2

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
√
1−a2
2

0 1+a
2


(3.33)

ρTBa =
1

8a+ 1



a 0 0 0 0 0 0 0 0

0 a 0 a 0 0 0 0 0

0 0 a 0 0 0 a 0 0

0 a 0 a 0 0 0 0 0

0 0 0 0 a 0 0 0 0

0 0 0 0 0 a 0 a 0

0 0 a 0 0 0 1+a
2

0
√
1−a2
2

0 0 0 0 0 a 0 a 0

0 0 0 0 0 0
√
1−a2
2

0 1+a
2


(3.34)
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where 0 < a < 1.

The projector on the kernel of ρa is:

P = |00〉〈00|+ c|00〉〈20| − |00〉〈22|+ c|20〉〈00|+ (3.35)

c2|20〉〈20| − c|20〉〈22| − |22〉〈00| − c|22〉〈20|+

|22〉〈22|+ |11〉〈11|+ c|11〉〈20| − |11〉〈22|

+c|20〉〈11|+ c2|20〉〈20| − c|20〉〈22| − |22〉〈11|

−c|22〉〈20|+ |22〉〈22|

The partial transpose of the projector on the kernel of ρTBa is:

QTB = d2|02〉〈02| − d2|00〉〈22| − d|02〉〈22| − d2|22〉〈00| (3.36)

+d2|20〉〈20|+ d|22〉〈20| − d|22〉〈02|+ d|20〉〈22|

+|22〉〈22|+ |12〉〈12| − |11〉〈22| − |22〉〈11|

+|21〉〈21|+ |01〉〈01| − |00〉〈11| − |11〉〈00|+ |10〉〈10|

where c =
√
1−a2
1+a

and d =
√
1−a2
a−1 . Thus the witness is obtained as :

W =



0 0 0 0 −1 0 ck 0 −(d2 + k)

0 1− k 0 0 0 0 0 0 0

0 0 d2 − k 0 0 0 0 0 −d
0 0 0 1− k 0 0 0 0 0

−1 0 0 0 0 0 ck 0 −1− k
0 0 0 0 0 1− k 0 0 0

ck 0 0 0 ck 0 2c2k + d2 − k 0 d− 2ck

0 0 0 0 0 0 0 1− k 0

−(d2 + k) 0 −d 0 −1− k 0 d− 2ck 0 1 + k


(3.37)

Using W as constructed in (3.37) we obtain,

Tr(Wρa) = −k < 0 (3.38)
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Example 2: Next we construct the witness for the edge state in 3 qubits

proposed in [ABLS01]. The edge state was proposed as:

δtri =
1

n



1 0 0 0 0 0 0 1

0 a 0 0 0 0 0 0

0 0 b 0 0 0 0 0

0 0 0 c 0 0 0 0

0 0 0 0 1
c

0 0 0

0 0 0 0 0 1
b

0 0

0 0 0 0 0 0 1
a

0

1 0 0 0 0 0 0 1


(3.39)

where n = 2 + a + b + c + 1/a + 1/b + 1/c and the basis is taken in the

order |000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉.The partial transpose

with respect to system C is given by:

δTCtri =
1

n



1 0 0 0 0 0 0 0

0 a 0 0 0 0 1 0

0 0 b 0 0 0 0 0

0 0 0 c 0 0 0 0

0 0 0 0 1
c

0 0 0

0 0 0 0 0 1
b

0 0

0 1 0 0 0 0 1
a

0

0 0 0 0 0 0 0 1


(3.40)

The vector in the kernel of δtri is |000〉 − |111〉 and the vector in the kernel

of δTCtri is |001〉 − a|110〉. With these vectors the witness (3.18) is obtained as
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:

Wtri =



0 0 0 0 0 0 0 −k − a
0 1− k 0 0 0 0 0 0

0 0 −k 0 0 0 0 0

0 0 0 −k 0 0 0 0

0 0 0 0 −k 0 0 0

0 0 0 0 0 −k 0 0

0 0 0 0 0 0 a2 − k 0

−k − a 0 0 0 0 0 0 0


(3.41)

which gives,

Tr(Wtriδtri) = −k < 0 (3.42)

3.7 Summary

PPT entangled states share a close proximity with separable states and

thereby go unnoticed by most detection procedures. Even in the class of

entanglement witnesses,not all witnesses can detect them. We need non-

decomposable operators to detect them.Significantly, as entanglement wit-

nesses are not universal in nature,what one operator detects goes undetected

by another witness. Therefore,different considerations give birth to different

witnesses.

In this chapter, we have prescribed a non-decomposable operator for the

detection of edge states.The proposed witness operator is interesting in the

sense that it conditionally detects a larger set of PPT entangled state than

the non-decomposable witness operator given by Lewenstein et.al.[LKCH00].

However,the fact gets reversed under a different set of conditions. The ex-

perimental relevance of the witness further substantiates its construction.

Together as newer methods of detection arise to increasingly recognize entan-

gled states,the geometry of the set of entangled states is also being probed

upon.The set of entangled states is not convex i.e a convex combination of

two entangled states might not be convex. However,some entangled states
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combine to form entangled states. A witness that detects the two entangled

states at the endpoints might be able to detect all the states in between.

This also increases by manifold the number of entangled states detected by

a single witness.However,it takes some examination before we construct such

common witnesses, an investigation that we report in the next chapter.



Chapter 4

Common Entanglement

Witnesses

4.1 Prelude

Detection of quantum entanglement is a rigorous procedure as vindicated

by the observation that the separability problem is NP-hard [Gur03].The

most involved part in any detection procedure of quantum entanglement

is to have a uniform conclusive result for the set of all separable states.

This is further aggravated by the complexity of the geometry of the entan-

gled states as it is not convex. Although entanglement witnesses provide a

pragmatic detection procedure for entangled states, yet its construction is a

difficult task. However, several methods have been suggested in literature

[GT09, HHHH09, Ter00, DPS04, SV09].

The notion of entanglement witnesses was further extended to Schmidt num-

ber witnesses [SBL01, TH00, SV11]. This is a significant approach as mixed

states do not admit a unique Schmidt decomposition.Further, since Schmidt

number is an indicator of the amount of entanglement present in a state,

Schimdt number witnesses contribute to entanglement quantification.

Since,entanglement witnesses are not universal, one pertinent line of study

44
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is to gauge the number of states that can be detected by a single witness.

Optimization of witnesses[LKCH00] is a significant approach in this direc-

tion. However, another approach is the search for common witnesses for

different entangled states. It was proved by Wu and Guo [WG07] that for

a given pair of entangled states ρ1 and ρ2, a common EW exists if and only

if λρ1 + (1 − λ)ρ2 is an entangled state ∀λ ∈ [0, 1]. They thus arrived at a

sufficient condition for entanglement for pairs of entangled states. Construc-

tion of a common entanglement witness for two entangled states not only

detects them but also any state which is a convex combination of the two.

Thereby one can detect a large class of entangled states if one is able to find

a common EW satisfying the above criterion.

In the present chapter our motivation is to propose some methods to con-

struct common EW for certain classes of states making use of the above con-

dition of existence. We first propose some characteristics of common Schmidt

number witnesses based on the analysis of common entanglement witnesses,

providing suitable examples for our propositions. We then suggest schemes

for finding common EW for various categories of states based on their spec-

tral characteristics. The distinction between a common decomposable wit-

ness operator and a non-decomposable one is of relevance in the probe for

finding common EW. A decomposable operator is unable to detect a PPTES

(positive partially transposed entangled state), whereas a non-decomposable

witness can successfully detect a PPTES. This distinction propagates to a

common witness. Precisely, if one of the entangled states in a convex com-

bination is a PPTES, then the common witness is non-decomposable. Our

analysis makes use of some decomposable and nondecomposable witnesses.

We illustrate our results through various appropriate examples from qutrit

systems. The chapter is organized as follows. In section 4.2, we propose

and study some features of common Schmidt number witnesses. Next, in

section 4.3 we suggest methods to detect a combined pair of entangled states

and construct the common EW for them. We then provide explicit examples

demonstrating our methods for finding common entanglement witnesses in

section 4.4. In section 4.5, we distinguish between a common decomposable

and a non-decomposable witness operator citing examples. We conclude with
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a brief summary of our results in section 4.6.

4.2 Common Schmidt number witness

Consider the space B(HN ⊗HM), with N < M . Define Sk to be the set of

states whose Schmidt number is ≤ k. Thus, S1 is the set of separable states

and the different states share the relation S1 ⊂ S2 ⊂ S3.... ⊂ Sk.. ⊂ SN and

are convex[SBL01, TH00].

A k Schmidt witness(kSW ),W S is defined as [SBL01, TH00, SV11]

Tr(W Sσ) ≥ 0, ∀σ ∈ Sk−1 (4.1)

Tr(W Sρ) < 0 for at least one ρ ∈ Sk (4.2)

A well-known example of a kSW is I − m
k−1P [SBL01] where m and k re-

spectively denote the dimension and Schmidt number and P is a projector

on 1√
m

Σm−1
i=0 |ii〉.

Proposition-I: Suppose ρ1 and ρ2 are Schmidt number k states. If there

exists a common kSW for ρ1 and ρ2, then the Schmidt number of their

convex combination will also be k. In other words the Schmidt number of

λρ1 + (1− λ)ρ2 is also k (λ ∈ [0, 1]).

Proof: Since ρ1,ρ2 are in Sk and Sk is convex , λρ1 + (1− λ)ρ2 cannot have

a Schmidt number > k.

Now, let W S be the common kSW for ρ1 and ρ2 . As a result

Tr(W S(λρ1 + (1− λ)ρ2)) = λTr(W Sρ1) + (1− λ)Tr(W Sρ2) < 0 (4.3)

since Tr(W Sρ1) < 0, Tr(W Sρ2) < 0. Thus the Schmidt number of λρ1 +

(1− λ)ρ2 is also k.

Proposition-II: Suppose δ1 and δ2 are two states with Schmidt number

(SN) k1 and k2 respectively where k1 > k2. Then a common witness Wk, if

it exists, will be of class k, where k ≤ min(k1, k2).

Proof: It follows from the definition of Schmidt number witness that there
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exists a k1SW , Wk1 for which Tr(Wk1δ1) < 0, but Tr(Wk1δ2) ≥ 0. Therefore

a common witness if it exists should be of class k where k ≤ min(k1, k2).

Example-I: Convex combination of two pure SN 3 states

Consider the states |Φ1〉 = a|00〉 + b|11〉 +
√

1− a2 − b2|22〉 and |Φ2〉 =

x|00〉+y|11〉+
√

1− x2 − y2|22〉. A 3SW of the form W S3 = I− 3
2
P detects

both states for many ranges of a, b, c, x, y, z (one such range is 0.25 ≤ a ≤
0.65, 0.25 ≤ b ≤ 0.65, 0.25 ≤ x ≤ 0.65, 0.25 ≤ y ≤ 0.65). Therefore, for those

ranges, W S3 is a common witness for the states |Φ1〉 and |Φ2〉 and thus their

convex combination will have SN 3. (P is a projector on 1√
3
Σ2
i=0|ii〉)

Example-II: Convex combination of a pure SN 3 state and a pure

SN 2 state

Consider now the state |Φ1〉 = a|00〉 + b|11〉 +
√

1− a2 − b2|22〉 and |χ〉 =

t|00〉+
√

1− t2|11〉. Here a 2SW of the form W S2 = I − 3P detects both of

them whereas the previous 3SW fails to qualify as a common witness.

Example-III: Convex combination of a mixed state and a pure SN

2 state

Consider the two-qutrit isotropic state Ω = αP + 1−α
9
I with (−1

8
≤ α ≤

1). The 2SW , W S2 detects it ∀1 ≥ α > 1
4
, which is exactly the range

for which the isotropic state is entangled. As a result, the 2SW detects

λΩ + (1− λ)|χ〉〈χ|(λ ∈ [0, 1]).

4.3 Methods to construct common entangle-

ment witness

Case-I: Let us consider that the two states described by the density op-

erators ρ1 and ρ2 be negative partial transpose (NPT) states. Let us fur-

ther assume that the two sets S1 and S2 consist of the set of all eigen-

vectors of ρ
TA

1 and ρ
TA

2 corresponding to their negative eigenvalues. In set

builder notation, S1 and S2 can be expressed as S1 = {|x〉 : ρ
TA

1 |x〉 =
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λ−|x〉, λ− is a negative eigenvalue of ρ
TA

1 } and S2 = {|y〉 : ρ
TA

2 |y〉 =

α−|y〉, α− is a negative eigenvalue of ρ
TA

2 }. Now we propose the follow-

ing theorem:

Theorem 4.1. If S1 ∩S2 6= φ, then there exists a common witness detecting

not only ρ1 and ρ2 both but also all the states lying on the straight line joining

ρ1 and ρ2

Proof: Let S1 ∩ S2 6= φ . Then there exists a non-zero vector |η〉 ∈ S1 ∩ S2.

Let W = (|η〉〈η|)TA . This gives

Tr(Wρ1) = Tr((|η〉〈η|)TAρ1) = Tr((|η〉〈η|)ρTA1 ) < 0 (4.4)

With similar justifications,

Tr(Wρ2) < 0 (4.5)

If now we consider ρ = λρ1 + (1− λ)ρ2, λ ∈ [0, 1], then Tr(Wρ) < 0. Hence

the theorem.

Case-II: Let δ1 and δ2 be two edge states. We know that a witness operator

of the form Wedge = P+QTA−εI can detect an edge state δ if P is a projector

on ker(δ) and Q a projector on ker(δTA) and 0 < ε ≤ ε0 = inf|e,f〉〈e, f |P +

QTA|e, f〉 where |e, f〉 is a product vector [LKCH00]. Thus we propose:

Theorem 4.2. Wedge can detect both δ1 and δ2 if dim(ker(δ1)∩ker(δ2)) > 0

or dim(ker(δTA1 ) ∩ ker(δTA2 )) > 0.

Proof: Let dim(ker(δ1) ∩ ker(δ2)) > 0, i.e., there exists at least one non-

zero eigenvector |a〉 ∈ ker(δ1) ∩ ker(δ2). We assume P = |a〉〈a|.
Further, let dim(ker(δTA1 )∩ker(δTA2 )) > 0. We take |b〉 ∈ ker(δTA1 )∩ker(δTA2 ).

Assume Q = (|b〉〈b|)TA . On taking Wedge = P + QTA − εI with the above

mentioned definition of ε , we obtain

Tr(Wedgeδ1) < 0 and Tr(Wedgeδ2) < 0 (4.6)



Chapter 4. Common Entanglement Witnesses 49

Consequently, Wedge detects δ = λδ1 + (1− λ)δ2 for 0 ≤ λ ≤ 1 since

Tr(Wedgeδ) = Tr(Wedge(λδ1 + (1− λ)δ2)) < 0 (4.7)

Thus Wedge is a common witness for δ1 and δ2 and detects any convex com-

bination of δ1 and δ2.

Case-III: Let δ1tri and δ2tri be two tripartite edge states. Using (3.18) we

have the following theorem:

Theorem 4.3. The witness Wtri can detect both the tripartite edge states δ1tri

and δ2tri if dim(ker(δ1tri)∩ker(δ2tri)) > 0 or dim(ker((δ1tri)
TX )∩ker((δ2tri)

TX )) >

0. Here TX represents the transposition with respect to any one of the sub-

systems.

Proof: Proof is similar to Theorem 4.2.

4.4 Examples from Qutrit systems

Here, we exemplify the methods to find common entanglement witnesses as

laid down in section 4.3 for the different classifications.

Example 1: Let us consider the following states in C3 ⊗ C3: ρ1 = |ψ1〉〈ψ1|
and ρ2 = |ψ2〉〈ψ2|, where |ψ1〉 = 1√

2
(|00〉+ |11〉) and |ψ2〉 = 1√

3
(|00〉+ |11〉+

|22〉). On observation we find an eigenvector |e−〉 = |01〉 − |10〉 common to

ρTA1 and ρTA2 corresponding to their respective negative eigenvalues. On defin-

ing U = |e−〉〈e−| and W = UTA , we obtain Tr(Wρ1) < 0 and Tr(Wρ2) < 0.

Therefore, W is a common witness to the entanglement in ρ1 and ρ2. Hence

we can conclude that ρ = λρ1 + (1 − λ)ρ2 is entangled for all λ ∈ [0, 1] and

can be detected by W .

Example 2: The following family of edge states in C2 ⊗C4 was introduced

in [AGKL10].
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τ(b, s) =
1

2(2 + b+ b−1)



b 0 0 0 0 −1 0 0

0 1 0 0 0 0 −1 0

0 0 b−1 0 0 0 0 −1

0 0 0 1 s 0 0 0

0 0 0 s 1 0 0 0

−1 0 0 0 0 b−1 0 0

0 −1 0 0 0 0 1 0

0 0 −1 0 0 0 0 b


(4.8)

(τ(b, s))TA =
1

2(2 + b+ b−1)



b 0 0 0 0 0 0 s

0 1 0 0 −1 0 0 0

0 0 b−1 0 0 −1 0 0

0 0 0 1 0 0 −1 0

0 −1 0 0 1 0 0 0

0 0 −1 0 0 b−1 0 0

0 0 0 −1 0 0 1 0

s 0 0 0 0 0 0 b


(4.9)

where 0 < b < 1 and |s| < b. We consider δ1 = τ(0.4, 0) and δ2 = τ(0.5, 0).

It is observed that the eigenvector |01〉 + |12〉 ∈ ker(δ1) ∩ ker(δ2). Further,

the eigenvector |03〉+ |12〉 and |01〉+ |10〉 lies in ker(δTA1 )∩ker(δTA2 ). Taking

the projectors as defined in Theorem 4.2, we obtain the witness

Wedge =



−ε 0 0 0 0 1 0 0

0 −ε+ 2 0 0 0 0 1 0

0 0 −ε 0 0 0 0 1

0 0 0 −ε+ 1 0 0 0 0

0 0 0 0 −ε+ 1 0 0 0

1 0 0 0 0 −ε 0 0

0 1 0 0 0 0 −ε+ 2 0

0 0 1 0 0 0 0 −ε


(4.10)
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This gives Tr(Wedgeδ1) < 0 and Tr(Wedgeδ2) < 0. Thus, Wedge is a common

witness and also detects the class of states δ = λδ1 + (1− λ)δ2, 0 ≤ λ ≤ 1.

Example 3: We consider the following class of tripartite edge states as pro-

posed in [ABLS01]:

δtri(a, b, c) =
1

n



1 0 0 0 0 0 0 1

0 a 0 0 0 0 0 0

0 0 b 0 0 0 0 0

0 0 0 c 0 0 0 0

0 0 0 0 1
c

0 0 0

0 0 0 0 0 1
b

0 0

0 0 0 0 0 0 1
a

0

1 0 0 0 0 0 0 1


(4.11)

where n = 2 + a+ b+ c+ 1/a+ 1/b+ 1/c and the basis is taken in the order

|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉. The partial transpose with

respect to system C is given by

δTCtri (a, b, c) =
1

n



1 0 0 0 0 0 0 0

0 a 0 0 0 0 1 0

0 0 b 0 0 0 0 0

0 0 0 c 0 0 0 0

0 0 0 0 1
c

0 0 0

0 0 0 0 0 1
b

0 0

0 1 0 0 0 0 1
a

0

0 0 0 0 0 0 0 1


(4.12)

Next we take the edge states δ1tri = δtri(1, 1, 1) and δ2tri = δtri(1, 2, 2). It

is observed that |111〉 − |000〉 ∈ ker(δ1tri) ∩ ker(δ2tri) and |110〉 − |001〉 ∈
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ker((δ1tri)
TC ) ∩ ker((δ2tri)

TC ).The witness obtained is

Wtri =



0 0 0 0 0 0 0 −k − 1

0 1− k 0 0 0 0 0 0

0 0 −k 0 0 0 0 0

0 0 0 −k 0 0 0 0

0 0 0 0 −k 0 0 0

0 0 0 0 0 −k 0 0

0 0 0 0 0 0 1− k 0

−k − 1 0 0 0 0 0 0 0


(4.13)

It is found that Wtri detects both δ1tri and δ2tri , thus detecting the states

δ12tri = λδ1tri + (1− λ)δ2tri, ∀λ ∈ [0, 1].

4.5 Common decomposable and non-decomposable

witness operators

Central to the idea of the detection of a PPTES is a non-decomposable wit-

ness which can successfully identify a PPTES in contrast to a decomposable

witness which fails in this purpose. If we are given two states described by

the density operators ∆1 and ∆2 then we can construct a witness opera-

tor common not only to the states ∆1 and ∆2 but also to the states lying

on the straight line joining ∆1 and ∆2. Naturally, the next question is,as to

whether the common witness operator is decomposable or non-decomposable.

The answer lies in the nature of the states ∆1 and ∆2. The decomposable or

non-decomposable nature of the common witness operator depends on the

PPT or NPT nature of the states ∆1 and ∆2. Let us suppose that ∆1 and

∆2 are two entangled states. Now if we consider the convex combination of

∆1 and ∆2, i.e., ∆ = λ∆1 +(1−λ)∆2, 0 ≤ λ ≤ 1, then the common decom-

posable witness operator and common non-decomposable witness operator

can be seen as:



Chapter 4. Common Entanglement Witnesses 53

Common decomposable witness operator: If both ∆1 and ∆2 are NPT

then a decomposable operator is enough to qualify as a common witness.

Common non-decomposable witness operator: If either ∆1 or ∆2 or

both are PPT then the common witness operator is non-decomposable.

Note that if ∆1 is PPT and ∆2 is NPT, or vice-versa, then the state ∆

may be NPT and it may be detected by a decomposable witness operator,

but such a witness operator will not be common to ∆1 and ∆2, because

either ∆1 or ∆2 is PPT, and a PPT entangled state cannot be detected

by a decomposable witness operator. Let us understand the above defined

common decomposable and common non-decomposable witness operators

by considering the following two cases: (i) convex combination of a class

of PPT entangled state and a class of NPT pure entangled state and (ii)

convex combination of a class of PPT entangled state and a class of NPT

mixed entangled state.

Case-I: Convex combination of a class of PPT entangled state and

a class of NPT pure entangled state

Let us consider a class of PPT entangled state [HHH99b]

ρe1 =
2

7
|ψ+〉〈ψ+|+ α

7
%+ +

5− α
7

%−, 3 < α ≤ 4 (4.14)

where |ψ+〉 = 1√
3
(|00〉 + |11〉 + |22〉), %+ = 1

3
(|01〉〈01| + |12〉〈12| + |20〉〈20|)

and %− = 1
3
(|10〉〈10| + |21〉〈21| + |02〉〈02|). Further let us consider a pure

entangled state which is described by the density operator

ρe2 = β|00〉〈00|+ β
√

1− β2|00〉〈11|+ β
√

1− β2|11〉〈00|+ (1− β2)|11〉〈11| (4.15)

The convex combination of the above two states can be described by the

density operator

ρe = λρe1 + (1− λ)ρe2, 0 ≤ λ ≤ 1 (4.16)

Enumerating the eigenvalues of the partial transpose of the state (4.16) it is
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observed that the state has the following characterization:

Sl. No. λ α β Nature of ρe

1 0 ≤ λ < 0.75 3 < α ≤ 3.9 0.07 < β ≤ 0.99 (ρe)TB < 0

2 0.75 ≤ λ ≤ 1 3 < α ≤ 3.9 0 ≤ β ≤ 0.01 (ρe)TB ≥ 0

Since the state ρe is free entangled for the range of three parameters 0 ≤ λ <

0.75, 3 < α ≤ 3.9, 0.07 < β ≤ 0.99, so a decomposable witness operator is

sufficient to detect it and it is given by

W d = (|χ〉〈χ|)TB (4.17)

where |χ〉 is an eigenvector corresponding to a negative eigenvalue of the

state (ρe)TB . The witness operator W d detects ρe as well as the state ρe2,

but it fails to detect ρe1, as ρe1 is PPT and W d is decomposable. So, in this

case we are not able to construct a common decomposable witness operator.

However,we can construct a non-decomposable witness operator in the form

W nd = |φ〉〈φ| − εI (4.18)

where |φ〉 ∈ ker(ρe). With this selection, we obtain

Tr(W ndρe) = −ε < 0, T r(W ndρe1) = −ε < 0, T r(W ndρe2) = −ε < 0 (4.19)

The above non-decomposable witness operator W nd not only detects ρe2 but

also detects ρe1, and thus, it is a common non-decomposable witness operator.

Let us now consider the case when (ρe)TB ≥ 0 for 0.75 ≤ λ ≤ 1, 3 < α ≤ 3.9,

0 ≤ β ≤ 0.01. As β → 0, the state ρe2 approaches the separable projector

|11〉〈11|. Consequently, the convex combination of ρe1 and ρe2 is PPT. Thus in

this scenario, we can conclude that either all the states lying on the straight

line joining ρe1 and the projector |11〉〈11| are separable, or we are incapable

of detecting the most weak bound entangled state.

Case-II: Convex combination of a class of PPT entangled state and

a class of NPT mixed entangled state
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Let us consider a class of PPT entangled mixed state and a class of NPT

entangled mixed state which are described by the density operators[HHH99b]

Υ1 =
2

7
|ψ+〉〈ψ+|+ α

7
%+ +

5− α
7

%− (3 < α ≤ 4) (4.20)

and

Υ2 =
2

7
|ψ+〉〈ψ+|+ γ

7
%+ +

5− γ
7

%− (4 < γ ≤ 5) (4.21)

respectively. The convex combination of the states Υ1 and Υ2 is given by

Υ = λΥ1 + (1− λ)Υ2 (0 ≤ λ ≤ 1) (4.22)

The nature of the resultant state described by the density operator Υ depends

on the values of the mixing parameter λ and the other two parameters α and

γ, as is given in the table below:

Sl. No. α γ λ Nature of Υ

1 3 < α ≤ 4 4 < γ ≤ 5 0 ≤ λ < γ−4
γ−α ΥTB < 0

2 3 < α < 4 4 < γ ≤ 5 γ−4
γ−α ≤ λ ≤ 1 ΥTB ≥ 0

3 α = 4 4 < γ ≤ 5 λ = 1 ΥTB ≥ 0

The state Υ is NPT for the range of parameters 3 < α ≤ 4, 4 < γ ≤ 5,

0 ≤ λ < γ−4
γ−α , and in this case the common witness operator is a non-

decomposable witness which detects Υ, Υ1 and Υ2, whereas a decomposable

witness fails to detect all the three simultaneously. However, in the remaining

two cases where the ranges of three parameters are given by 3 < α < 4, 4 <

γ ≤ 5, γ−4
γ−α ≤ λ ≤ 1 and α = 4, 4 < γ ≤ 5, λ = 1, we find that the

vectors |v1〉 = |11〉 − |00〉 ∈ ker(Υ1) ∩ ker(Υ2) and |v2〉 = |22〉 − |00〉 ∈
ker(Υ1) ∩ ker(Υ2). In this scenario, a non-decomposable witness operator

can be constructed, which detects both Υ1, Υ2 and hence Υ. Such a non-

decomposable witness operator is of the form

Γ = P − εI (4.23)
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where P = |v1〉〈v1|+ |v2〉〈v2|, and 0 < ε ≤ ε0 = inf|e,f〉〈e, f |P |e, f〉.

4.6 Summary

To summarize, in this chapter we have investigated the conditions for the

existence of common Schmidt number and entanglement witnesses, and pro-

posed methods for the construction of common witness operators. Common

entanglement witnesses for pairs of entangled states enable us to detect a

large class of entangled states, viz., when a common witness exists for two

states, it enables us to detect all states lying on the line segment joining the

two. Certain characteristics of the states help us to construct the common

witnesses which we have discussed here. We have considered a few interest-

ing examples of states presented earlier in the literature in the context of

entanglement witnesses, and these illustrations from qutrit systems buttress

our claim of suggesting schemes for finding common witnesses.

Before concluding, let us discuss a couple of relevant issues. First, regarding

the non-decomposable witness of the form P +QTA − εI, a method was pro-

posed in [Ter01] to obtain an analytic lower bound of ε and relevant bounds

were obtained for some special states which possessed high degrees of symme-

try. However the procedure becomes cumbersome when the sets concerned

contain few symmetries and also in high dimensions[Ter01].It was stated in

[HMABM04], that the calculation of ε would require a multivariable mini-

mization routine. The value of ε was calculated numerically in [GHB+03],

albeit for some special states where the discussion was on the measurability

of some witness operators. However, the purpose of the present chapter is

to present an analytic description of common entanglement witnesses when

detection of many entangled states by the same operator is concerned. In the

example , we have used the definition of ε as was provided in [LKCH00]. The

definition of edge states ensures that ε > 0, hence an expectation value −ε
indicates the presence of entanglement. Thus the positivity of ε is enough to

accentuate the aforesaid detection. Secondly, one may also note that The-

orem 4.1 can be extended for three or more states, viz., a common witness

will exist for three states if there is a common eigenvector corresponding to
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the negative eigenvalues of their partial transposes.

Finally, our study also shows that the nature of the common witness is sig-

nificantly dictated by the positivity of the partial transpose of the two states.

Specifically, a decomposable witness can never qualify to be a common wit-

ness if one of the states is PPTES. Thus, we demarcate between a common

decomposable and a nondecomposable witness. In our analysis of common

Schmidt number witnesses we find that if the two states are both of SN k

and a common SN witness exists for them, then the convex combination will

be of SN k. We conclude by noting that an interesting question for further

study could be to find whether the converse of the above statement is true.

The study on entanglement witnesses was initially motivated by the quest to

demarcate entangled states from the separable ones. Although entanglement

has been recognized as a major resource in quantum information process-

ing tasks yet not all entangled states are eligible for the same. This further

motivates the search for useful entangled states, an investigation that we re-

port in the next chapter pertaining to a quintessential quantum information

processing task namely Teleportation.



Chapter 5

Witness operator for Quantum

Teleportation

5.1 Prelude

Quantum information processing is now widely recognized as a powerful

tool for implementing tasks that cannot be performed using classical means

[NC10]. A large number of algorithms for various information processing

tasks such as super dense coding[BW92], teleportation [BBC+93] and key

generation [Eke91] have been proposed and experimentally demonstrated.

At the practical level information processing is implemented by manipulat-

ing states of quantum particles, and it is well known that not all quantum

states can be used for such purposes. Hence, given an unknown state, one of

the most relevant issues here is to determine whether it is useful for quantum

information processing.

The key ingredient for performing many information processing tasks is pro-

vided by quantum entanglement. Detection of entanglement is facilitated by

entanglement witnesses. However, entanglement witnesses has moved beyond

the realm of mere detection of entanglement. Since, the notion of entangle-

ment witnesses arose of separation axioms , they can be also put to use to

58
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distinguish special entangled states for information processing tasks.

Teleportation [BBC+93] is a typical information processing task where at

present there is intense activity in extending the experimental frontiers [BPM+97,

OMM+09, JRY+10]. However, it is well known that not all entangled states

are useful for teleportation. For example, while the entangled Werner state

[Wer89b] in 2⊗2 dimensions is a useful resource [LK00], another class of max-

imally entangled mixed states [MJWK01], as well as other non-maximally

entangled mixed states achieve a fidelity higher than the classical limit only

when their magnitude of entanglement exceeds a certain value [AMR+10].

The problem of determining states useful for teleportation becomes con-

ceptually more involved in higher dimensions where bound entangled states

[Hor97, HHH98] also exist. The motivation for this study is to enquire how to

determine whether an unknown entangled state could be used as a resource

for performing information processing tasks. In the present chapter we con-

sider this question for the specific task of quantum teleportation. We propose

and demonstrate the existence of measurable witness operators connected to

teleportation, by making use of a property of entangled states, viz, the fully

entangled fraction (FEF) [BDSW96, HHH99a] which can be related to the

efficacy of teleportation. In spite of the conceptual relevance of the FEF as

a characteristic trait of entangled states [VJN00], its actual determination

could be complicated for higher dimensional systems[ZLFW10]. Our proof

of the existence of witnesses connected to a relevant threshold value for the

FEF enables us to construct a suitable witness operator for teleportation, as

is illustrated with certain examples.

The chapter discusses the existence of hermitian operators for teleportation

in section 5.2 followed by the proposition of such a witness in d ⊗ d dimen-

sions in 5.3. The chapter ends with suitable examples depicting the utility

of the proposed operator in various dimensions and speculations on future

directions of work.
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5.2 Proof of existence of witness

The fully entangled fraction (FEF) [HHH99a] is defined for a bipartite state

ρ in d⊗ d dimensions as

F (ρ) = maxU〈ψ+|U † ⊗ IρU ⊗ I|ψ+〉 (5.1)

where |ψ+〉 = 1√
d

∑d−1
i=0 |ii〉 and U is a unitary operator. A quantum channel

is useful for teleportation if it can provide a fidelity higher than what can

be done classically. The fidelity depends on the FEF of the state, e.g., a

state in d ⊗ d dimensions works as a teleportation channel if its FEF > 1
d

[HHH99a, VJN00, ZLFW10].

Here we propose the existence of a hermitian operator which serves to

distinguish between states having FEF higher than a given threshold value

from other states. FEF > 1
d

is a benchmark which measures the viability of

quantum states in teleportation. Let us consider the set S of states having

FEF ≤ 1
d
. A special geometric form of the Hahn-Banach theorem in func-

tional analysis [Hol75] states that if a set is convex and compact, then a

point lying outside the set can be separated from it by a hyperplane. The

existence of entanglement witnesses are indeed also an outcome of this theo-

rem [HHH96, Ter00]. We now present the proof that the set S of states with

FEF ≤ 1
d

is indeed convex and compact, so that the separation axiom in the

form of the Hahn-Banach theorem could be applied in order to demonstrate

the existence of hermitian witness operators for teleportation.

Theorem 5.1. The set S = {ρ : F (ρ) ≤ 1
d
} is convex and compact.

Proof: The proof is done in two steps. (i) We first show that S is convex.

Let ρ1, ρ2 ∈ S. Therefore,

F (ρ1) ≤
1

d
, F (ρ2) ≤

1

d
. (5.2)

Consider ρc = λρ1+(1−λ)ρ2, where λ ∈ [0, 1] and F (ρc) = 〈ψ+|U †c ⊗IρcUc⊗
I|ψ+〉. Now, F (ρc) = λ〈ψ+|U †c⊗Iρ1Uc⊗I|ψ+〉+(1−λ)〈ψ+|U †c⊗Iρ2Uc⊗I|ψ+〉.
Let F (ρi) = 〈ψ+|U †i ⊗ IρiUi ⊗ I|ψ+〉, (i = 1, 2). This is possible since the
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group of unitary matrices is compact, hence the maximum will be attained

for a unitary matrix U . It follows that F (ρc) ≤ λF (ρ1)+(1−λ)F (ρ2). Using

Eq.(5.2) we have

F (ρc) ≤
1

d
(5.3)

Thus, ρc lies in S, and hence, S is convex.

(ii) We now show that S is compact. Note that in a finite dimensional

Hilbert space, in order to show that a set is compact it is enough to show

that the set is closed and bounded. The set S is bounded as every density

matrix has a bounded spectrum, i.e., eigenvalues lying between 0 and 1. In

order to prove that the set S is closed, consider first the following lemma.

Lemma: Let A and B be two matrices of size m× n and n× r respectively.

Then ‖AB‖ ≤ ‖A‖‖B‖, where the norm of a matrix A is defined as ‖A‖ =√
TrA†A =

√∑
i

∑
j |Aij|2.

Proof of the lemma: Let A =


A1

A2

.

.

Am

 and B = [B(1)B(2)....B(r)] , where Ai’s

are row vectors of size n and B(j)’s are column vectors of size n respectively.

Using the Cauchy-Schwarz inequality, it follows that |(AB)ij| = |AiB(j)| ≤
‖Ai‖‖B(j)‖. Therefore, one has

‖AB‖2 =
m∑
i=1

r∑
j=1

|(AB)ij|2 ≤
m∑
i=1

r∑
j=1

‖Ai‖2‖B(j)‖2 (5.4)

The r.h.s of the above inequality can be expressed as
∑m

i=1 ‖Ai‖2
∑r

j=1 ‖B(j)‖2 =

‖A‖2‖B‖2, from which it follows that ‖AB‖ ≤ ‖A‖‖B‖.
For any two density matrices ρa and ρb, assume the maximum value of

FEF is obtained at Ua and Ub respectively, i.e., F (ρa) = 〈ψ+|U †a ⊗ IρaUa ⊗
I|ψ+〉 and F (ρb) = 〈ψ+|U †b ⊗ IρbUb ⊗ I|ψ+〉. Therefore, we have F (ρa) −
F (ρb) = 〈ψ+|U †a⊗IρaUa⊗I|ψ+〉−〈ψ+|U †b⊗IρbUb⊗I|ψ+〉 from which it follows
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that F (ρa)−F (ρb) ≤ 〈ψ+|U †a⊗IρaUa⊗I|ψ+〉−〈ψ+|U †a⊗IρbUa⊗I|ψ+〉 since

〈ψ+|U †a ⊗ IρbUa⊗ I|ψ+〉 ≤ 〈ψ+|U †b ⊗ IρbUb⊗ I|ψ+〉. Hence, F (ρa)−F (ρb) ≤
〈ψ+|U †a ⊗ I(ρa − ρb)Ua ⊗ I|ψ+〉, implying

F (ρa)− F (ρb) ≤ |〈ψ+|U †a ⊗ I(ρa − ρb)Ua ⊗ I|ψ+〉|. (5.5)

Now, using the above lemma, one gets F (ρa)−F (ρb) ≤ ‖〈ψ+|‖‖U †a⊗I‖‖(ρa−
ρb)‖‖Ua ⊗ I‖‖|ψ+〉‖, or F (ρa) − F (ρb) ≤ C2K2

1‖ρa − ρb‖, where C,K1 are

positive real numbers. The last step follows from the fact that ‖〈ψ+|‖ = C.

Since the set of all unitary operators is compact, it is bounded, and thus

for any U , ‖U ⊗ I‖ ≤ K1. Similarly F (ρb) − F (ρa) ≤ C2K2
1‖ρb − ρa‖ =

C2K2
1‖ρa − ρb‖. So finally, one may write

|F (ρa)− F (ρb)| ≤ C2K2
1‖ρa − ρb‖. (5.6)

This implies that F is a continuous function. Moreover, for any density

matrix ρ, with F (ρ) ∈ [ 1
d2
, 1], one has F (ρ) = 1 iff ρ is a maximally entangled

pure state, and F (ρ) = 1
d2

iff ρ is the maximally mixed state [ZLFW10]. For

the set S in our consideration F (ρ) ∈ [ 1
d2
, 1
d
]. Hence, S = {ρ : F (ρ) ≤ 1

d
} =

F−1([ 1
d2
, 1
d
]), is closed [Rud64]. This completes the proof of our proposition

that the set S = {ρ : F (ρ) ≤ 1
d
} is convex and compact.

It now follows from the Hahn-Banach theorem [Hol75], that any χ 6∈ S
can be separated from S by a hyperplane. In other words, any state useful

for teleportation can be separated from the states not useful for teleportation

by a hyperplane and thus allows for the definition of a witness. The witness

operator, if so defined, identifies the states which are useful in the telepor-

tation protocol, i.e., provides a fidelity higher than the classical optimum.

5.3 A witness operator for teleportation

A hermitian operator W may be called a teleportation witness if the following

conditions are satisfied: (i) Tr(Wσ) ≥ 0, for all states σ which are not useful
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Figure 5.1: The set S = {ρ : F (ρ) ≤ 1
d
} is convex and compact, and using

the Hahn-Banach theorem it follows that any state useful for teleportation
can be separated from the states not useful for teleportation by a hyperplane,
thus providing for the existence of a witness for teleportation.

for teleportation. (ii) Tr(Wχ) < 0, for at least one state χ which is useful

for teleportation. We propose a hermitian operator for a d⊗ d system of the

form (using |ψ+〉 = 1√
d

∑d−1
i=0 |ii〉)

W =
1

d
I − |ψ+〉〈ψ+| (5.7)

In order to prove that W is indeed a witness operator, we first show that the

operator W gives a non-negative expectation over all states which are not

useful for teleportation. Let σ be an arbitrary state chosen from the set S

not useful for teleportation, i.e., σ ∈ S. Hence,

Tr(Wσ) =
1

d
− 〈ψ+|σ|ψ+〉 (5.8)

from which it follows that Tr(Wσ) ≥ 1
d
−maxU〈ψ+|U †⊗IσU⊗I|ψ+〉. Now,

using the definition of the FEF, F (σ) from Eq.(5.1), and the fact that σ ∈ S,
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one gets

Tr(Wσ) ≥ 0 (5.9)

Our task now is to show that the operator W detects at least one entangled

state χ which is useful for teleportation, i.e., Tr(Wχ) < 0, which we do by

providing the following illustrations.

Let us first consider the isotropic state

χβ = β|ψ+〉〈ψ+|+ 1− β
d2

I (− 1

d2 − 1
≤ β ≤ 1) (5.10)

The isotropic state is entangled ∀β > 1
d+1

[BDHK05]. Now, Tr(Wχβ) =
(d−1)(1−β(d+1))

d2
, from which it follows that Tr(Wχβ) < 0, when β > 1

d+1
.

Therefore, all entangled isotropic states are useful for teleportation. The

same conclusion was obtained in [ZLFW10] on explicit calculation of the

FEF for isotropic states. We next consider the generalized Werner state

[Wer89b, PR00, DC09] in d⊗ d given by

χwer = (1− v)
I

d2
+ v|ψd〉〈ψd| (5.11)

where 0 ≤ v ≤ 1 and |ψd〉 =
∑d−1

i=0 αi|ii〉, with
∑

i |αi|2 = 1, for which one

obtains Tr(Wχwer) = 1
d
− 1−v

d2
− v

d

∑d−1
i=0 αi

∑d−1
i=0 α

∗
i . The witness W detects

those Werner states which are useful for teleportation, i.e., Tr(Wχwer) < 0,

which is the case when

1

d
− 1− v

d2
− v

d

d−1∑
i=0

αi

d−1∑
i=0

α∗i < 0 (5.12)

In 2⊗2 dimensions with αi = 1/
√

2, one gets Tr(Wχwer) = 1−3v
4

< 0,when v >
1
3
. Thus, all entangled Werner states are useful for teleportation, a result

which is well-known [LK00].

Now, consider another class of maximally entangled mixed states in 2⊗2

dimensions, which possess the maximum amount of entanglement for a given
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purity [MJWK01]:

χMEMS =


h(C) 0 0 C/2

0 1− 2h(C) 0 0

0 0 0 0

C/2 0 0 h(C)

 (5.13)

where, h(C) = C/2 for C ≥ 2/3, and h(C) = 1/3 for C < 2/3, with C

the concurrence of χMEMS. Here we obtain Tr(WχMEMS) = 1
2
− h(C)− C

2
.

For C > 1
3
, the state χMEMS is suitable for teleportation, as one obtains

Tr(WχMEMS) < 0 in this case, confirming the results derived earlier in the

literature [AMR+10]. However, as expected with any witness, our proposed

witness operator may fail to identify certain other states that are known to

be useful for teleportation. For example, the state (for |φ〉 = 1√
2
(|01〉+ |10〉)

and 0 ≤ a ≤ 1)

ρφ = a|φ〉〈φ|+ (1− a)|11〉〈11| (5.14)

was recently studied in the context of quantum discord [ARA10]. This class

of states is useful for teleportation but the witness W is unable to detect it

as Tr(Wρφ) = a
2
≥ 0.

Let us now briefly discuss the measurability of the witness operator. For

experimental realization of the witness it is necessary to decompose the wit-

ness into operators that can be measured locally, i.e, a decomposition into

projectors of the form W =
∑k

i=1 ci|ei〉〈ei| ⊗ |fi〉〈fi| [GT09, GHB+03]. For

implementation using polarized photons as in [BDMDN+03], one may take

|H〉 = |0〉, |V 〉 = |1〉, |D〉 = |H〉+|V 〉√
2

, |F 〉 = |H〉−|V 〉√
2

, |L〉 = |H〉+i|V 〉√
2

, |R〉 =
|H〉−i|V 〉√

2
as the horizontal, vertical, diagonal, and the left and right circular

polarization states, respectively. Using a result given in [Hyl05], our witness

operator can be recast for qubits into the required form, given by

W =
1

2
(|HV 〉〈HV |+ |V H〉〈V H| − |DD〉〈DD|

−|FF 〉〈FF |+ |LL〉〈LL|+ |RR〉〈RR|) (5.15)

Using this technique for an unknown two-qubit state χ, the estimation of
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〈W 〉 requires three measurements [Hyl05], as is also evident from the decom-

position of our witness operator for qubits in terms of Pauli spin matrices,

i.e., W = 1
4
[I ⊗ I − σx ⊗ σx + σy ⊗ σy − σz ⊗ σz], which is far less than the

measurement of 15 parameters required for full state tomography[JKMW01].

In higher dimensions, the witness operator may be decomposed in terms of

Gell-Mann matrices [BK08], and this difference further increases with the

increase in dimensions. Therefore, the utility of the witness operator is in-

dicated as compared to full state tomography when discrimination of useful

entangled states for performing teleportation is required.

Before concluding, it may be noted that it is possible to relate the FEF

(5.1) with the maximum fidelity for other information processing tasks, such

as super dense coding and entanglement swapping [GEJ02]. In the gener-

alized dense coding for d ⊗ d systems, one can use a maximally entangled

state |φ〉 to encode d2/2 bits in d2 orthogonal states (I ⊗ Ui)|φ〉 [LLTL02].

If the maximally entangled state is replaced with a general density opera-

tor, the dense coding fidelity is defined as an average over the d2 results. A

relation between the maximum fidelity Fmax
DC of dense coding and the FEF

was established for d ⊗ d systems to be Fmax
DC = F . Similarly, for two-qubit

systems the maximum fidelity of entanglement swapping[ŻZHE93] Fmax
ES is

also related to the FEF by Fmax
ES = F [GEJ02]. However, teleportation is

a different information processing task as compared to dense coding where

F > 1/d does not guarantee a higher than classical fidelity [BDL+04]. Hence,

it is not possible to apply the above witness (5.7) to super dense coding and

entanglement swapping.

5.4 Summary

To summarize, in this chapter we have proposed a framework for discrimi-

nating quantum states useful for performing teleportation through the mea-

surement of a hermitian witness operator. The ability of an entangled state

to act as a resource for teleportation is connected with the fully entangled

fraction of the state. The estimation of the fully entangled fraction is difficult

in general, except in the case of some known states. We have shown that
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the set of states having their fully entangled fraction bounded by a certain

threshold value required for teleportation is both convex and compact. Ex-

ploiting this feature we have demonstrated the existence of a witness operator

for teleportation. The measurement of the expectation value of the witness

for unknown states reveals which states are useful as resource for performing

teleportation. We have provided some illustrations of the applicability of

the witness for isotropic and Werner states in d⊗ d dimensions, and another

class of maximally entangled mixed states for qubits. The measurability of

such a witness operator requires determination of a much lesser number of

parameters in comparison to state tomography of an unknown state, thus

signifying the practical utility of our proposal. It would be interesting to

explore the possibility of existence of witnesses for various other information

processing tasks, as well. In this context further studies on finding optimal

and common witnesses are called for.



Chapter 6

Construction of optimal

teleportation witnesses

6.1 Prelude

Entanglement witnesses provide experimentally viable procedures for detect-

ing the presence of entanglement in composite quantum systems. How-

ever,entanglement witnesses are not universal, and hence the question as

to how to maximally detect entangled states, i.e., increase the number of

states detected by the witness, is of significance. One direction in this line

of thought has been provided by the study on common entanglement wit-

nesses [WG07, GAM13]. Another important path in this quest is the study

on optimal entanglement witnesses [LKCH00]. Optimization of entangle-

ment witnesses entails the refinement of witnesses , so that a witness can

detect the largest class of states within a given set. In fact a witness W1

is said to be finer than another witness W2 if W1 detects some more states

in addition to the states that W2 detects. The possibility of optimization

of entanglement witnesses has lead to the construction of optimal witnesses

[BDHK05, CP11].

Entanglement witnesses enable experimentally viable procedures to detect

68
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the presence of entanglement, a notion that has been carried forward to iden-

tify manifestations of various properties of quantum states, such as macro-

scopic entanglement through thermodynamical witnesses[BV04], as well as

witnesses for quantum correlations [DVB10], teleportation [GAMC11, ZFLJ12],

cryptography [BHH12] and mixedness [MPM13]. Although entanglement is

a key ingredient for teleportation, yet not all entangled states are useful

for the purpose of teleportation. The problem gets accentuated in higher

dimensions where bound entangled states [HHH98] are also present. The

ability of an entangled state to perform teleportation is linked to a threshold

value of the fully entangled fraction [BDSW96] which is difficult to estimate

except for some known states [ZLFW10]. Based upon the linkage of the

threshold value of the fully entangled fraction with teleportation fidelity, and

utilising again the separation axioms, the existence of hermitian operators

acting as teleportation witness was demonstrated and studied in the previ-

ous chapter[GAMC11]. A teleportation witness WT is a hermitian operator

with at least one negative eigenvalue and (i) Tr(WT$) ≥ 0, for all states $

not useful for teleportation and (ii) Tr(WTϑ) < 0 for atleast, one entangled

state ϑ which is useful for teleportation. In a following work [ZFLJ12] a tele-

portation witness with interesting universal properties was proposed, which

though depends upon the choice of a unitary operator that may be difficult

to find in practice, especially in higher dimensions.The difficulty in identify-

ing useful resources for teleportation necessitates the construction of suitable

teleportation witnesses that would be possible to implement experimentally

in order to ascertain whether a given unknown state would be useful as a

teleportation channel. Moreover, analogous to the theory of entanglement

witnesses, maximal detection of states capable for teleportation is a question

of significance. This chapter addresses both the issues. In section 6.2 con-

struction of optimal teleportation witnesses is prescribed for qubits, qutrits

and qudits. In section 6.3 suitable examples are provided to vindicate the

efficacy of such optimal witnesses.
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6.2 Optimal teleportation witness

Between two witnesses W1 and W2, W1 is said to be finer than W2, if DW2 ⊆
DW1, where DWi = {χ : Tr(Wiχ) < 0}, i = 1, 2, i.e., the set of entangled

states detected by Wi. A witness is said to be optimal if there exists no other

witness finer than it [LKCH00]. Further, if the set of product vectors |e, f〉,
PW = {|e, f〉 : Tr(W |e, f〉〈e, f |) = 0}, spans the relevant product Hilbert

space, then the witness W is optimal [LKCH00]. It was shown in[ATL11] that

if a witness operating on Hm ⊗Hm can be expressed in the form W = QTA ,

where Q is the projector on a pure entangled state, then the witness W is

optimal.

On the other hand, as stated earlier, the ability of a quantum state in

performing teleportation is determined by a threshold value of the fully entan-

gled fraction, given by F (ρ) = maxUTr[(U
†⊗ I)ρ(U ⊗ I)|Φ〉〈Φ|] [BDSW96],

where |Φ〉 = 1√
d

∑d−1
k=0 |kk〉 and U is an unitary operator. Precisely, in d⊗ d

systems if F (ρ) exceeds 1
d
, then the state is considered useful for the protocol

[BDSW96].

6.2.1 Optimal teleportation witness for qubits

Consider the entanglement witness, W 2 = ρTAφ+ , where |φ+〉 = 1√
2
(|00〉+ |11〉),

acting on two qubit systems. Since, ρφ+ = 1
4
(I⊗I+σx⊗σx−σy⊗σy+σz⊗σz),

one thus obtains, W 2 = 1
4
(I⊗ I+σx⊗σx +σy⊗σy +σz⊗σz), which implies,

Tr((W 2 − 1

4
σy ⊗ σy)ρ)

=
1

4
Tr((I ⊗ I + σx ⊗ σx + σz ⊗ σz)ρ) (6.1)

for any arbitrary density matrix ρ. Hence,

F (ρ) ≥ Tr(ρ|φ+〉〈φ+|) (6.2)

The r.h.s of the above equation is given by 1
4
Tr((I ⊗ I + σx⊗ σx + σz ⊗ σz −

σy ⊗ σy)ρ), which using Eq.(6.1), becomes Tr((W 2 − 1
2
σy ⊗ σy)ρ). This in
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turn implies using Eq.(6.2) that

Tr((
1

2
σy ⊗ σy +

1

2
I −W 2)ρ) ≥ 1

2
− F (ρ) (6.3)

If ρ is not useful for teleportation, i.e., F (ρ) ≤ 1
2
, then Tr((1

2
σy ⊗ σy + 1

2
I −

W 2)ρ) ≥ 0, implying that

W2⊗2 =
1

2
σy ⊗ σy +

1

2
I −W 2 (6.4)

is a teleportation witness acting on two qubits.

Next, with some straightforward algebraic manipulation it is observed

that the witness can be expressed as

W2⊗2 = (|ψ−〉〈ψ−|)TA (6.5)

where, |ψ−〉 = 1√
2
(|01〉 − |10〉). Further the product vectors (|0〉 + i|1〉) ⊗

(|0〉 − i|1〉), (|0〉 + |1〉)⊗2, |00〉, |11〉 span C2 ⊗ C2 and belong to PW2⊗2 . This

establishes the optimality of the teleportation witness [LKCH00, ATL11].

6.2.2 Optimal teleportation witness for qutrits

The generalized Gell-Mann matrices are higher dimensional extensions of the

Pauli matrices (for qubits) and are hermitian and traceless. They form an

orthogonal set and basis. In particular, they can be categorized for qutrits

as the following types of traceless matrices [BK08]:

λ1 =

 0 1 0

1 0 0

0 0 0

 ,λ2 =

 0 -i 0

i 0 0

0 0 0

 , λ3 =

 1 0 0

0 −1 0

0 0 0

 ,

λ4 =

 0 0 1

0 0 0

1 0 0

 , λ5 =

 0 0 -i

0 0 0

i 0 0

 , λ6 =

 0 0 0

0 0 1

0 1 0

 ,
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λ7 =

 0 0 0

0 0 -i

0 i 0

 , λ8 =

 1/
√

3 0 0

0 1/
√

3 0

0 0 −2/
√

3


Now, consider the following entanglement witness in qutrits,

W 3 = (|δ〉〈δ|)TA (6.6)

where, δ = 1√
3
(|00〉+ |11〉+ |22〉), yielding,

W 3 =
1

9
(I ⊗ I +

3

2
∆) (6.7)

with ∆ =
∑8

i=1 λ
i ⊗ λi. Therefore, for any arbitrary density matrix σ ∈

B(H3 ⊗H3) ,taking ∆1 = λ2 ⊗ λ2 + λ5 ⊗ λ5 + λ7 ⊗ λ7 and ∆2 = λ1 ⊗ λ1 +

λ3 ⊗ λ3 + λ4 ⊗ λ4 + λ6 ⊗ λ6 + λ8 ⊗ λ8, one gets

Tr[(W 3 − 1

6
∆1)σ] =

1

9
Tr[(I ⊗ I +

3

2
∆2)σ] (6.8)

Hence,

F (σ) ≥ Tr(σ|δ〉〈δ|) (6.9)

The r.h.s. may be expressed as 1
9
Tr((I ⊗ I + 3

2
(∆2 − ∆1))σ) which using

Eq.(6.8) becomes Tr((W 3 − 1
3
∆1)σ). It follows from Eq.(6.9) that

Tr[(
1

3
∆1 +

1

3
I −W 3)σ] ≥ 1

3
− F (σ) (6.10)

Hence, if σ is not useful for teleportation , i.e., F (σ) ≤ 1
3

[BDSW96], then

Tr[(1
3
∆1 + 1

3
I −W 3)σ] ≥ 0. Thus,

W3⊗3 =
1

3
∆1 +

1

3
I −W 3 (6.11)

is indeed a teleportation witness for qutrits.

Now, let us denote by PW3⊗3 , the set of all product vectors on which
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the expectation value of the witness W3⊗3 vanishes, i.e., PW3⊗3 = {|e, f〉 :

〈e, f |W3⊗3|e, f〉 = 0}. If we consider the product vectors K1 = |00〉, K2 =

|11〉, K3 = |22〉, K4 = (|0〉+ |1〉+ |2〉)⊗2, K5 = (|0〉+ i|1〉)⊗ (|0〉− i|1〉), K6 =

(|0〉 + i|2〉) ⊗ (|0〉 − i|2〉), K7 = (|1〉 + i|2〉) ⊗ (|1〉 − i|2〉), K8 = (|0〉 − |1〉 −
|2〉)⊗2, K9 = (|0〉 + |1〉 − |2〉)⊗2, it is noticed that (i) 〈Ki|W3⊗3|Ki〉 = 0,

(ii) Ki’s are linearly independent, ∀i ∈ {1, 2, ..9}. Thus it follows that PW3⊗3

spans C3⊗C3. This ascertains the optimality of the witness W3⊗3 [LKCH00].

6.2.3 Teleportation witness for qudits

For general qudit systems the construction of teleportation witnesses from

entanglement witnesses may be undertaken in a manner similar to that shown

above for qubits or qutrits. Utilising the generalized Gell-Mann matrices for

d ⊗ d systems, and retracing the steps of an argument similar to that used

for qubits and qutrits, one can obtain a teleportation witness for qudits as

Wd⊗d =
1

d

d−2∑
j=0

d−1∑
k=j+1

(Λjk
a ⊗ Λjk

a ) +
1

d
I − (|Φ〉〈Φ|)TA (6.12)

where, Λjk
a = -i|j〉〈k| + i|k〉〈j|, 0 ≤ j < k ≤ d − 1 and |Φ〉 = 1√

d

∑d−1
l=0 |ll〉.

Here it may be remarked that there is no general proof of optimality for

teleportation witness for qudits, but optimality for a given dimension needs

to be checked in the manner above by considering the set of all product

vectors on which the expectation value of the witness vanishes.

6.3 Illustrations and Decomposition

We now consider certain classes of states pertaining to qubits and qutrits,

which exemplify the action of our constructed witness. Let us first take the

class of two qubit states with maximally mixed marginals, given by

ηmix =
1

4
(I ⊗ I +

3∑
i=1

ciσi ⊗ σi) (6.13)
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The expectation value of the witness given by Eq.(6.4) on the above state

gives

Tr(W2⊗2ηmix) =
1

4
(1 + c2 − c1 − c3) (6.14)

implying that for 1 + c2 − c1 − c3 < 0, the witness W2⊗2 detects the states

as useful for teleportation. Since W2⊗2 is optimal, this is the largest set of

states useful for teleportation in the given class that can be detected by any

witness. Next, we consider the isotropic state in qutrits, given by

ηiso = α|φ3
+〉〈φ3

+|+
1− α

9
I (6.15)

where, |φ3
+〉 = 1√

3
(|00〉 + |11〉 + |22〉) and −1

8
≤ α ≤ 1. Now applying the

witness given by Eq.(6.11), it is observed that

Tr(W3⊗3ηiso) =
2− 8α

9
(6.16)

implying that for α > 1
4
, the states are useful for teleportation. Thus, the

witness W3⊗3 detects all entangled isotropic states as useful for teleportation,

in conformity with a result already known in the literature [ZLFW10]. This

is a reaffirmation of the optimality of the witness W3⊗3, as it detects the

maximal class of isotropic states as useful for teleportation.

The practical use for teleportation witnesses is that they are experimen-

tally realizable on account of being hermitian. For qubit systems, the decom-

position of a proposed teleportation witness in terms of Pauli spin operators

has been shown earlier [GAMC11]. The teleportation witness constructed

here is expressed in terms of generalized Gell-Mann matrices which are her-

mitian. However, for d = 3, i.e., qutrit systems the teleportation witness

can also be expressed in terms of spin-1 operators [BK08] which are the ob-

servables Sx, Sy, Sz, S
2
x, S

2
y , S

2
z , {Sx, Sy}, {Sy, Sz}, {Sz, Sx} of a spin-1 system,

where
−→
S = {Sx, Sy, Sz} is the spin operator and {Si, Sj} = SiSj +SjSi (with

i, j = x, y, z) denotes the corresponding anticommutator. They are given by,

Sx = ~√
2

 0 1 0

1 0 1

0 1 0

 , Sy = ~√
2

 0 -i 0

i 0 -i

0 i 0

 , Sz = ~

 1 0 0

0 0 0

0 0 −1

. Ex-
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pressing the witness given by Eq.(6.11) in terms of spin-1 operators, yields

W3⊗3 = −2

9
(I ⊗ I) + Π (6.17)

where

Π =
1

6~2
(Sy ⊗ Sy − Sz ⊗ Sz − Sx ⊗ Sx)

+
1

6~4
(−{Sz, Sx} ⊗ {Sz, Sx}+ {Sx, Sy} ⊗ {Sx, Sy}

+{Sy, Sz} ⊗ {Sy, Sz}) +
2

3~2
(I ⊗ S2

x + I ⊗ S2
y

+S2
x ⊗ I + S2

y ⊗ I)− 2

3~4
(S2

x ⊗ S2
x + S2

y ⊗ S2
y)

− 1

3~4
(S2

x ⊗ S2
y + S2

y ⊗ S2
x) (6.18)

Thus, for an experimental outcome,

〈W3⊗3〉 = −2

9
〈I ⊗ I〉+ 〈Π〉 < 0 (6.19)

one can detect the given unknown state as useful for teleportation.

6.4 Summary

We have presented here a method to construct teleportation witnesses from

entanglement witnesses for general qudit systems. Optimality of the wit-

nesses that we have constructed for qubit and qutrit states ensures a broader

perspective in the sense that a maximal class of entangled states can now

be recognized to be useful for teleportation. Decomposition of the proposed

witness in terms of spin operators authenticates its feasibility in experimen-

tal detection of entanglement. The present analysis may be extended in a

few directions. One may seek to test the optimality of the witness for two-

qudits of any given dimension d > 3. Finally, the choice of the entanglement

witnesses are not limited to the ones we have taken up here, and other en-

tanglement witnesses may be considered and checked for their viability in

the construction of teleportation witnesses using similar methods.
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In our discussion so far, we have considered the signature of entanglement

in quantum systems. Subsequently, amongst the entangled states we have

probed upon useful resources of teleportation through teleportation witness

operators. To this end we have used separation axioms analogous to the

theory of entanglement witnesses.

However, on the other hand the separable states too have interesting man-

ifestations. As is well known, even though local unitary operations fail to

create entanglement between separable systems, global unitary operations

can be suitable for the purpose. However, not all separable states give rise

to entangled states on non-local unitary operation. States which are sepa-

rable from spectrum result in separable states on the action of any global

operation. Therefore, states which are not separable from spectrum occupies

a pertinent place in the creation of entanglement. This is what we probe

in the next chapter, namely identification of separable states from which

entanglement can be created through non-local unitary operations.



Chapter 7

Witness of mixed separable

states useful for entanglement

creation

7.1 Prelude

An intriguing feature of the set of separable states is concerning the problem

of separability from spectrum [Kni03]. This problem calls for a characteri-

zation of those separable states σ for which UσU † is also separable for all

unitary operators U . A possible approach towards this end is to find con-

straints on the eigenvalues of σ such that it remains separable under any

factorization of the corresponding Hilbert space. The states that are sepa-

rable from spectrum are also termed as absolutely separable states [KŻ01].

There exists a ball of known radius centered at the maximally mixed state
1
mn

(I⊗I) (for mn×mn density matrices), where all the states within the ball

are absolutely separable [ŻHSL98, GB02]. However, there exist absolutely

separable states outside this ball too[IH00].

The problem of separability from spectrum was first handled in the case of

2⊗2 systems [VADM01], where it was shown that σ is absolutely separable if

77
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and only if (iff) its eigenvalues (in descending order) satisfy λ1 ≤ λ3+2
√
λ2λ4.

A closely related problem is the characterization of the states which have

positive partial transpose (PPT) from spectrum, i.e., the states σppt with

the property that UσpptU
† is PPT for any unitary operator U . It was

shown [Hil07] that σppt ∈ D(H2 ⊗ Hn) (D(X) represents the bounded lin-

ear operators acting on X) is PPT from spectrum iff its eigenvalues obey

λ1 ≤ λ2n−1 + 2
√
λ2n−2λ2n. It has been recently shown that separability from

spectrum is equivalent to PPT from spectrum for states living in D(H2⊗Hn)

[Joh13].

The generation of entanglement from separable states is one of the leading

experimental frontiers at present [SKK+00, RNO+00, KC01, LL09, KRS11].

As absolutely separable states remain separable under global unitary opera-

tions, such states cannot be used as input states for entanglement creation.

Though pure product states are not absolutely separable, the same is not true

for mixed separable states which become absolutely separable after crossing

a given amount of mixedness [TBKN11]. Given the ubiquity of environ-

mental interactions in turning pure states into mixed ones, it is of practical

importance to determine whether a state is eligible to be used as input for

entanglement generation. The utility of mixed separable states which are not

absolutely separable was highlighted in [IH00] for the generation of maximally

entangled mixed states. Mixed separable states from which entanglement can

be created have also been studied in other works [BPCP03, GHH+14].

Quantum gates have been employed to generate entanglement, especially

in the context of quantum computation where unitary gates operate on qubits

to perform information processing. Much work has been devoted to study

the entangling capacity of unitary gates [DWS03, MKŻ13]. Quantum algo-

rithms use pure product states which can be turned into maximally entangled

states using global unitary operations. However, if the state is maximally

mixed no benefit can be drawn from it through global unitary operations.

States in some vicinity of the maximally mixed state also remain separable as

noted in [ŻHSL98, GB02], though such states may have possible implications

in nuclear magnetic resonance quantum computation [BCJ+99, SPAM+12].

However, states not close to the maximally mixed state may be useful for
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entanglement creation. So, it is important to study what happens when one

moves from one extreme of a maximally mixed state to the other, i.e., a pure

product state, within the set of all separable states.

Given the immense significance of mixed separable states, we present here

systematic proposal to identify separable states which are not absolutely sep-

arable. Our approach is somewhat different from the objective of imposing

restrictions on the spectrum of absolutely separable states [VADM01, Hil07,

Joh13]. Our motivation here is to identify those separable states which are

not absolutely separable, i.e., the separable states χ for which UχU † is en-

tangled for some unitary operator U . To this end, we characterize the set

of all absolutely separable states in any finite dimensional bipartite system

as convex and compact. This enables one to construct hermitian operators

which identify separable states that are not absolutely separable in any arbi-

trary dimension Hilbert space. Proposing a general method of construction of

witnesses, we illustrate their action on various two-qudit systems. Examples

of unitary operations presented here include the celebrated CNOT (Con-

trolled NOT) gate. We further show that the witnesses can be decomposed

in terms of spin operators and locally measureable photon polarizations for

qubit states, in order to facilitate their experimental realization.

7.2 Existence, construction and completeness

of witness

We begin with some notations and definitions needed. We consider density

matrices in any arbitrary dimensional bipartite system, i.e., ρ ∈ D(Hm⊗Hn).

S = {ρ : ρ is separable} is the set of all separable states, and AS = {σ ∈ S :

UσU † is separable ∀ unitary operators U} is the set of all absolutely separa-

ble states. AS forms a non-empty subset of S, as 1
mn

(I ⊗ I) ∈ AS. A point

x is called a limit point of a set A if each open ball centered on x contains

at least one point of A different from x. The set is closed if it contains each

of its limit points [Sim63].
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Theorem 7.1. AS is a convex and compact subset of S.

Proof: AS is convex: Let σ1, σ2 ∈ AS and σ = λσ1 + (1 − λ)σ2, where

λ ∈ [0, 1]. Consider an arbitrary unitary operator U . Therefore,

UσU † = λUσ1U
† + (1− λ)Uσ2U

† = λσ
′

1 + (1− λ)σ
′

2 (7.1)

where σ
′
i = UσiU

†, i = 1, 2. σ
′
1, σ

′
2 ∈ S as σ1, σ2 ∈ AS. Since S is convex,

UσU † ∈ S, which implies that σ ∈ AS. Hence, AS is convex.

AS is compact: Consider an arbitrary limit point θ of AS (AS will

always have a limit point. For example, in the neighbourhood of the identity

there are other absolutely separable states). The same θ must also be a limit

point of S as AS ⊂ S . Thus θ ∈ S, because S is closed. Now, let us

inductively construct a sequence {θn} of distinct states from AS such that

θn → θ as follows:

θ1 ∈ B1(θ) ∩AS, θ1 6= θ,

θ2 ∈ B 1
2
(θ) ∩AS, θ2 6= θ, θ1

... ∈ ..............

... ∈ ..............

θn ∈ B 1
n
(θ) ∩AS, θn 6= θ, θ1, θ2...θn−1 (7.2)

Here Br(θ) denotes an open ball of radius r centered at θ. (This construction

is possible because each neighbourhood of θ contains infinitely many points

of AS, θ being a limit point of AS). For the above mentioned choice of θn’s,

evidently θn → θ. Hence, for any unitary operator U , one has UθnU
† →

UθU †. Thus, UθnU
† ∈ S for each n ≥ 1, as θn ∈ AS. Since S is a closed set,

it must contain the limit of the sequence {UθnU †}, which is UθU †. Hence,

UθU † ∈ S, for any arbitrary choice of the unitary operator U . Therefore,

θ ∈ AS as we already have θ ∈ S. Since θ is an arbitrary limit point of AS,

it follows that AS contains all its limit points, thereby implying that AS is

closed [Sim63]. As any closed subset of a compact set is compact [Sim63], one

concludes that AS is compact because S is compact. Hence, the theorem. �

In view of the theorem above, we now formally define a hermitian operator
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T which identifies separable but not absolutely separable states through the

following two inequalities:

Tr(Tσ) ≥ 0, ∀σ ∈ AS (7.3)

∃χ ∈ S−AS, s.t. T r(Tχ) < 0 (7.4)

Therefore, T identifies those separable states χ that become entangled under

some global unitary operation.

Consider χ ∈ S−AS. There exists a unitary operator Ue such that UeχU
†
e

is entangled. Consider an entanglement witness W that detects UeχU
†
e ,

i.e., Tr(WUeχU
†
e ) < 0. Using the cyclic property of the trace, one obtains

Tr(U †eWUeχ) < 0. It follows that

T = U †eWUe (7.5)

is our desired operator. Next, considering its action on an arbitrary abso-

lutely separable state σ, we see that Tr(Tσ) = Tr(U †eWUeσ) = Tr(WUeσU
†
e ).

As σ is absolutely separable, UeσU
†
e is a separable quantum state, and since

W is an entanglement witness, Tr(WUeσU
†
e ) ≥ 0. This implies that T has

a non-negative expectation value on all absolutely separable states σ. The

completeness of the separation axiom follows from the completeness of en-

tanglement witness, viz., for any entangled state UeχU
†
e , there always exists

a witness W [HHH96]. Thus, if χ is a separable but not absolutely separable

state, then one can always construct an operator T in the above mentioned

procedure which distinguishes χ from absolutely separable states.
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7.3 Illustrations

As the first example consider the separable state in D(H2 ⊗ H2) given by

[TBKN11]

χ2⊗2 =
1

4


1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

 (7.6)

which becomes entangled on application of the unitary operator

U1 =
1√
2


1 0 0 1

0
√

2 0 0

0 0
√

2 0

−1 0 0 1

 (7.7)

The entanglement witness

W1 =


c2 0 0 0

0 0 −c 0

0 −c 0 0

0 0 0 1

 (7.8)

with c = 1√
2+1

detects the entangled state U1χ2⊗2U
†
1 . Hence, the operator

T1 = U †1W1U1 (7.9)

gives Tr(T1χ2⊗2) < 0, detecting χ2⊗2 to be a state which is not absolutely

separable.

Next, consider the following separable density matrix χ2⊗4 ∈ D(H2⊗H4):
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χ2⊗4 =



1/4 0 1/4 0 0 0 0 0

0 0 0 0 0 0 0 0

1/4 0 1/4 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1/4 0 1/4

0 0 0 0 0 0 0 0

0 0 0 0 0 1/4 0 1/4


(7.10)

The state χe2⊗4 = U2χ2⊗4U
†
2 , is entangled due to the unitary operator

U2 =
1√
2



1 0 0 0 0 0 0 1

0
√

2 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0

0 0 0
√

2 0 0 0 0

0 0 0 0
√

2 0 0 0

0 0 0 0 0
√

2 0 0

0 0 0 0 0 0
√

2 0

−1 0 0 0 0 0 0 1


(7.11)

Therefore, the operator T2 = U †2W2U2 detects the state χ2⊗4 as a separable

but not absolutely separable state, where W2 is the entanglement witness for

the entangled state χe2⊗4, given by W2 = QTB ,with Q being a projector on

|10〉 − |01〉.
It is hard to classify states separable from spectrum in dimensions other

than 2 ⊗ n, due to the absence of suitable methodology in the existing lit-

erature. However, through our approach of witnesses we can identify states

which are not absolutely separable in any arbitrary dimension. Consider the

isotropic state ∈ D(H3 ⊗H3), given by

χ3⊗3 = α|φ+
3 〉〈φ+

3 |+
1− α

9
I, (7.12)

where |φ+
3 〉 = 1√

3
(|00〉 + |11〉 + |22〉). This state is separable for −1

8
≤
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α ≤ 1
4

[BDHK05]. It is observed that the unitary operator U3 = I −
(
√
2−1√
2

)(|00〉〈00|+|22〉〈22|)+ 1√
2
(|00〉〈22|−|22〉〈00|) converts χ3⊗3 to an entan-

gled state χe3⊗3 in the range α ∈ ( 1
1+3
√
2
, 1
4
]. So, the operator T3 = U †3W3U3

detects χ3⊗3 as a state that is not absolutely separable. Here W3 is the en-

tanglement witness for χe3⊗3, given by W3 = (|η〉〈η|)TB with |η〉 being the

eigenvector of (χe3⊗3)
TB corresponding to the eigenvalue −1

9
α + 1

9
−
√
2
3
α.

Let us now present a construction of the witness operator for general

qudit states. Take the unitary operator

Ud⊗d = I − (

√
2− 1√

2
)A+

1√
2
B (7.13)

where A = |00〉〈00|+ |d− 1, d− 1〉〈d− 1, d− 1| and B = |00〉〈d− 1, d− 1| −
|d− 1, d− 1〉〈00|, and the mixed separable state

χd⊗d =
1

4
|00〉〈00|+ 3

4
|d− 1, d− 1〉〈d− 1, d− 1| (7.14)

The state Ud⊗dχd⊗dU
†
d⊗d is entangled as detected by the witness Wd⊗d =

1
d
I − |P 〉〈P |, where P is the projector on the maximally entangled state
1√
d

∑d−1
i=0 |ii〉. Therefore, in d⊗d dimensions the operator Td⊗d = U †d⊗dWd⊗dUd⊗d

detects χd⊗d as a state which is not absolutely separable.

7.4 Entanglement creation using quantum gates

Let us now consider some examples of unitary quantum gates which can

produce entanglement by acting on bipartite separable states. Since the

construction presented above is valid for any arbitrary dimension, let us

consider a case in d1⊗ d2 dimensions where d1 6= d2. Consider the two qudit

hybrid quantum gate UH acting on d1⊗d2 dimensions, whose action is defined

by

UH |m〉 ⊗ |n〉 = |m〉 ⊗ |m− n〉, (7.15)



Chapter 7. Witness of mixed separable states useful for entanglement
creation 85

with m ∈ Zd1 , n ∈ Zd2 [DWS03]. Let us take the initial mixed separable

state

χd1⊗d2 =
1

4
χx +

3

4
χy, (7.16)

where χx is a projector on 1√
2
(|0, d2 − 1〉 + |1, d2 − 1〉), and χy a projector

on |d1 − 1, d2 − 1〉. The state UHχd1⊗d2U
†
H is entangled as identified by the

witnessWd1⊗d2 = XTB (X being the projector on |02〉−|11〉). Hence, Td1⊗d2 =

U †HWd1⊗d2UH detects χd1⊗d2 as a state which is not absolutely separable. The

above example again illlustrates the fact that one can construct a hermitian

operator for two qudits (for equal or different dimensions) that can recognize

useful separable states from which entanglement can be created between the

two qudits using global unitary operations.

We finally consider the example of the much discussed CNOT gate. The

CNOT gate can generate entanglement between two qubits, if the state under

consideration is not absolutely separable. If we now consider the action of

UCNOT on a class of mixed separable states of two qubits of the form

χmix = a|00〉〈00|+ b|00〉〈10|+ b|10〉〈00|+ (1− a)|10〉〈10| (7.17)

where a, b ∈ R, we find that the states of the form χemix = UCNOTχmixU
†
CNOT

can be entangled. Such entanglement can be detected by the witnessWCNOT =

[(|10〉−|01〉)(〈10|−〈01|)]TB . A hermitian operator TCNOT constructed accord-

ing to our prescription, which detects χmix as a state not absolutely separable,

is given by TCNOT = U †CNOTWCNOTUCNOT . Now, Tr(TCNOTχmix) = −2b,

implying that for b > 0 the operator detects the class of states as useful for

entanglement creation under the action of the CNOT gate. For example, for

a = 3/4 and b = 1/4, we get a state that is not absolutely separable detected

by the witness TCNOT . On the other hand, a state of the form [Joh13]

σ =
1

11


1 0 0 0

0 3 2 0

0 2 3 0

0 0 0 4

 (7.18)
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leads to Tr(TCNOTσ) > 0, remaining separable under the action of the CNOT

gate, as the state σ (7.18) is absolutely separable. Note though, that nei-

ther the entanglement witness WCNOT , and nor consequently TCNOT as con-

structed here, are universal. As a result, the operator TCNOT fails to detect

some states which are not absolutely separable that exist even for b < 0 in

the class of states (7.17). However,through our generic approach, one can

construct another suitable witness operator to identify states not absolutely

separable in the latter range.

7.5 Decomposition of the witness operator

For the purpose of experimental determination of the expectation value of a

witness operator on a given state, it is helpful to decompose it in terms of

spin matrices [GHB+02]. As an example, the witness TCNOT which detects

the class of states χmix (7.17) as not absolutely separable, admits the decom-

position TCNOT = 1
2
(I⊗I−I⊗Z−X⊗Z−X⊗I) where X,Z are the usual

Pauli spin matrices. Further, in order that the witness operator can be mea-

sured locally, it may be decomposed in the form T =
∑k

i=1 ci|ei〉〈ei|⊗ |fi〉〈fi|
[GHB+02]. Experimental realization of entanglement witnesses has been

achieved using polarized photon states [BDMDN+03]. In case of the op-

erator TCNOT , the decomposition in terms of photon polarization states is

given by

TCNOT = |HV 〉〈HV |+ |V V 〉〈V V | − |DH〉〈DH|+ |FH〉〈FH| (7.19)

where, |H〉 = |0〉, |V 〉 = |1〉, |D〉 = |H〉+|V 〉√
2

, |F 〉 = |H〉−|V 〉√
2

are the horizontal,

vertical and diagonal polarization states respectively [BDMDN+03]. The

above decomposition suggests a realizable method to experimentally verify

whether it is possible to create an entangled state from a mixed separable

state through the action of an entangling gate.
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7.6 Summary

In this chapter we have proposed a framework to distinguish separable states

that remain separable from those that become entangled due to global uni-

tary operations in any arbitrary dimensional Hilbert space [Kni03, KŻ01,

ŻHSL98, GB02, IH00, VADM01, Hil07, Joh13]. To this end we have char-

acterized the set of all absolutely separable bipartite states as convex and

compact, enabling one to construct suitable hermitian operators for identi-

fication of states that are not globally separable. A generic procedure for

construction of such operators in any dimensions is suggested, which under-

lines the completeness of the separation, viz., if χ is not absolutely separable

then there will always be an operator which detects it. The action of the

operator is demonstrated on states in various dimensions. Observational fea-

sibility of witnesses for qubit states is highlighted through decomposition in

terms of locally measureable photon polarizations.

The generation of entanglement from separable initial states is of prime

importance in information processing applications [SKK+00, RNO+00, KC01,

LL09, KRS11]. Our method helps to identify eligible input states for entan-

glement creation using global unitary operations in general, and may be of

specific relevance in quantum gate operations [MKŻ13] widely used in quan-

tum computation. Though pure product states can be readily entangled

through such operations, the inevitability of environmental influences makes

the consideration of mixed states highly relevant, and thereby lends practical

significance to our proposal for detection of separable mixed states useful for

production of entanglement.



Chapter 8

Conclusions

The aim of this chapter is to capture the salient features presented in this

dissertation and also to speculate on some future directions of work. Quan-

tum information and its sister area quantum computation claims to make

revolutionary changes in computational and information processing tasks.

The strength of this claim relies on the phenomenon called entanglement.

Although the phenomenon started as a paradox to scientists questioning

the foundational attributes of quantum mechanics , yet towards the end of

the last century and in the dawn of this century the practical implementa-

tions of entanglement took centre stage. It promises to design state of the

art technologies like teleportation, superdense coding, quantum algorithms,

cryptography and the list goes on.

However,before one utilizes entangled quantum states one needs to detect its

presence in them. which operationally is a hard task. The lack of an uni-

versal approach further complicates the situation. The situation demands

to have a case by case study of quantum states with different approaches to

identify signatures of entanglement. Several methods have been laid down

over the time for this purpose. One significant approach in this direction

is the study on entanglement witnesses. Although entanglement witness is

generically a mathematical manifestation yet its practical implementations
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to detect entanglement has been quite popular . The strength of entangle-

ment witnesses further lies on the fact that if a state is entangled then there

will be a witness that detects it.

Entanglement witnesses, besides performing their primary job of detecting

entanglement have now diversified their scope to include various other facets

of entanglement. The notion of witnessing entanglement has been carried

forward to witness other aspects of quantum states like discord, mixedness

etc. Thus, characterization of quantum states plays an important role here.

Exploitation of the set of entangled states for different tasks motivates to

characterize the set.

This dissertation on one hand studies hermitian operators to detect entan-

glement and on the other hand also extends the notion of witness operators

to identify useful resources for quantum information processing tasks. The

thesis also sheds light on the set of separable states through the characteri-

zation of one of its special subsets, namely the absolutely separable states.

8.1 Summary of the thesis

In chapter 2 the basic mathematical and physical prerequisites have been

given to maintain the logical pedagogy. It also surveys important work re-

lated to this dissertation especially the focus being on entanglement wit-

nesses.

Chapter 3 discusses the construction of non-decomposable operators to detect

a special class of PPT entangled states, namely edge states. Comparisons

are made with previously known non-decomposable operators. The experi-

mental realization of the proposed witness operator is also discussed. The

utility of such a witness is vindicated through illustrations.

Common entanglement witnesses, i.e, a single witness which can detect a

large class of entangled states constitutes an effective procedure to maxi-

mally detect entangled states. Construction of such witnesses is discussed in

chapter 4.If a witness detects two states then it can detect all the states in

their convex combination. Different possible convex combinations of entan-
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gled states are discussed.Some insights on common schmidt number witnesses

have also been given.

The notion of witnessing entanglement is extended to identify useful resources

for teleportation in chapter 5 through hermitian operators, accordingly called

teleportation witnesses. The measurability of such operators is discussed in

comparison with conventional procedures.

Entanglement witnesses have been optimized in literature to bring more en-

tangled states into its detection domain. Likewise in chapter 6 we discuss

the construction of optimal teleportation witnesses. Optimality is reported

for 2⊗ 2 , 3⊗ 3 and generalized to d⊗ d systems.

Although local operations cannot generate entanglement between separa-

ble quantum states, global unitary operations can be used for this purpose.

However, absolutely separable states form a special subclass of states within

separable states as they remain separable under any global unitary oper-

ation. Chapter 7 introduces the notion of hermitian operators which can

recognize useful separable states from which entanglement can be created.

The existence and completeness of such operators are proved. Their practi-

cal relevance and measurability is discussed through significant illustrations

from arbitrary dimensions.

8.2 Future directions

This dissertation has the possibility of leading to several interesting directions

of future research. The thesis focusses on the utility of hermitian operators

in the detection and characterization of quantum entanglement. Separation

axioms, namely the seminal Hahn-Banach theorem from functional analysis

had already been utilized in the inception of entanglement witnesses to dis-

tinguish entangled states from the separable ones. Application of separation

axiom was made possible by the convexity and compactness of the set of

separable states.

We have probed here the detection of edge states which lie at the bound-

ary of PPT and NPT entangled states, through hermitian operators. One

may optimize such operators and bring more edge states in the detection
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fold. The study may also be extended to detect edge states in multipartite

systems involving many parties. Experimental realization of such operators

would also be of much relevance.

One may devise other methods to construct common entanglement witnesses

namely from geometric and algebraic considerations. The study may be ex-

tended to include multipartite PPT and NPT entangled states.

We have introduced the notion of teleportation witnesses here which iden-

tifies useful entangled states for quantum teleportation. We have devised

several such teleportation witness and analyzed their optimality. One may

thus, exercise geometrical considerations to construct teleportation witnesses

and study their experimental relevance. Entanglement witnesses have been

generically used to quantify entanglement . In a similar line of thought, quan-

tification of the teleportation capability of entangled states can be probed

upon through teleportation witness operators. Such quantifiers can thus be

compared with the respective teleportation fidelities of the entangled states

concerned.

Absolutely separable states which form a subset of the separable states, have

been characterized here as convex and compact. This entailed the inception

of hermitian operators to detect states which although separable, are not ab-

solutely separable. Such states are significant as entanglement can be created

from them with non-local unitary operations. An extension of the study to

the optimization of such operators would be significant. One may also con-

struct common hermitian operators which can identify separate classes of

non-absolutely separable states. The study may be extended to include the

detection of non-absolutely separable states in multipartite systems.

”We know that we do not know all the laws yet ....therefore things are to

be learned only to be unlearned again”

Richard Feynman
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Hillery, and Gerard J Milburn. Universal state inversion

and concurrence in arbitrary dimensions. Physical Review A,

64:042315, 2001.

[RNO+00] Arno Rauschenbeutel, Gilles Nogues, Stefano Osnaghi,

Patrice Bertet, Michel Brune, Jean-Michel Raimond, and

Serge Haroche. Step-by-step engineered multiparticle entan-

glement. Science, 288:2024, 2000.

[Rud64] Walter Rudin. Principles of Mathematical Analysis. McGraw-

Hill New York, 1964.



Bibliography 106

[Rud00] Oliver Rudolph. A separability criterion for density operators.

Journal of Physics A: Mathematical and General, 33:3951,

2000.

[SBL01] Anna Sanpera, Dagmar Bruß, and Maciej Lewenstein.

Schmidt-number witnesses and bound entanglement. Phys-

ical Review A, 63:050301, 2001.

[Sch35] E. Schrödinger. Present status of quantum mechanics. Die

Naturwissenschaften, 23, 1935.

[Sho94] Peter W Shor. Algorithms for quantum computation: dis-

crete logarithms and factoring. In Proceedings, 35th Annual

Symposium on Foundations of Computer Science, page 124.

IEEE, 1994.

[Sim63] George Finlay Simmons. Introduction to topology and modern

analysis. McGraw-Hill New York, 1963.

[SKK+00] C.A. Sackett, D. Kielpinski, B.E. King, C. Langer, V. Meyer,

C.J. Myatt, M. Rowe, Q.A. Turchette, W.M. Itano, D.J.

Wineland, et al. Experimental entanglement of four parti-

cles. Nature, 404:256, 2000.

[SPAM+12] D.O. Soares-Pinto, R. Auccaise, J. Maziero, A. Gavini-Viana,
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